
Local
Integration via
REST/MQTT
Important Note

Services like REST API and MQTT require a license.

Please visit www.whatwatt.ch/pricing for more information.

©2025 whatwatt

Version 2.0

Date 22/08/2025

whatwatt.ch
info@whatwatt.ch

©2025 whatwatt Integration via REST/MQTT · v2.0 / 2 60

Version Date Author Changes

1.0 02.09.2024 SJ Initial Version

1.1 05.09.2024 SJ Corrections

1.2 17.01.2025 TK Corrections

1.3 20.01.2025 TK Corrections

1.4 20.01.2025 SJ Update & Corrections

1.5 04.02.2025 SJ Update & Corrections

1.6 17.03.2025 SJ Update & Corrections

1.7 28.03.2025 SJ Update & Corrections

1.8 03.06.2025 SJ Update & Corrections – Actions

2.0 22.08.2025 SJ Added „ Secure MQTT Integration via e.g. Mosquitto“

1. Introduction	 5
1.1. Local REST API over HTTP	 5
1.2. MQTT Client Connection	 5
1.3. Conclusion	 5
2. General Information	 6
2.1. Device connected via WiFi and powered by the meter	 6
2.2. Finding a device on your local network	 6
2.3. Reading general system information	 6
3. Reading meter reports with REST API HTTP	 12
3.1. Polling method	 12
3.2. Streaming method	 17
4. Integration over MQTT client	 19
4.1.1. Template Description	 20
4.1.2. Reading variables locally	 24
5. Secure MQTT Integration	 30
5.1. Scope	 30
5.2. Prerequisites	 30
5.3. Install Mosquitto & clients	 30
5.4. Generate an ECDSA‑P256 Certificate Chain	 30
5.5. Deploy Certificates	 31
5.6. Configure Mosquitto (/etc/mosquitto/conf.d/tls.conf)	 31
5.7. Quick Local Subscription (CLI)	 31
5.8. Provision WhatWatt Go (JSON payload)	 31
5.9. Parameterised Provisioning Script (setup_mqtt.py)	 32
5.10. Production Hardening	 32
6. Settings	 33
6.1. General convention for using local REST API	 33
6.2. Service management and basic settings	 33
6.3. Meter communication settings	 35
6.4. Reading of currently applied scaler values	 37
6.5. Meter custom scalers settings	 39
6.6. Actions	 39
6.6.1. Action Definition	 39
6.6.2. Actions Execution	 43
6.6.3. Checking Action Execution Status	 43
6.7. Wi-Fi network setup	 45
6.8. Scan Wi-Fi networks	 46
6.9. Starting WPS pairing	 47
6.10. Ethernet Configuration	 48
6.11. Restarting the device device	 48
6.12. Factory reset	 49
6.13. SD card access	 49
6.13.1. Usage Examples	 50
6.14. Firmware Update	 53
©2025 whatwatt Integration via REST/MQTT · v2.0 / 3 60

Appendix A	 54
Understanding HTTP Requests, Methods, Response Codes, Body, and Path.	 54
HTTP Response Codes	 54
HTTP Request Body	 54
HTTP Path	 55
Conclusion	 55
Appendix B	 56
Using curl Command Options	 56
Appendix C	 57
Appendix D	 59

©2025 whatwatt Integration via REST/MQTT · v2.0 / 4 60

1. Introduction
The whatwatt Go device can be integrated into systems using two primary methods: the MQTT client
connection and local REST API over HTTP. Each method offers unique advantages and is suited for
different scenarios, particularly concerning network reliability, bandwidth usage, and ease of integration.

1.1. Local REST API over HTTP
The REST API provides a straightforward method for integrating the whatwatt Go device through
standard web protocols. Key advantages include:

• Ease of integration with various systems due to its simplicity and compatibility with many
development environments.

• Allows for direct implementation of CRUD operations (Create, Read, Update, Delete) on the data
provided by the device.

1.2. MQTT Client Connection
MQTT (Message Queuing Telemetry Transport) is a lightweight, publish-subscribe messaging protocol.
It is particularly beneficial for scenarios where bandwidth usage and network reliability are significant
concerns. By connecting as an MQTT client, the whatwatt GO device can:

• Efficiently handle high volumes of data transmission with minimal overhead.

• Ensure low latency, making it ideal for real-time monitoring and control applications.

• Optimize the use of network resources, providing a reliable method for data communication.

1.3. Conclusion
In summary, the whatwatt Go device offers versatile integration options to cater to different needs. The
MQTT client connection method is ideal for applications requiring real-time power usage monitoring and
efficient network usage, while the REST API over HTTP offers a simple and widely compatible
integration method. Both methods ensure that the device can be seamlessly incorporated into various
systems, enhancing its functionality and utility.

©2025 whatwatt Integration via REST/MQTT · v2.0 / 5 60

2. General Information

2.1. Device connected via WiFi and powered by the meter
When powering the device via the meter interface only (especially via MBUS) and using WiFi, keep in
mind the limited power resources of the device, do not call the HTTP API too often because in extreme
cases the system will shut down for a certain period of time.
If you notice that the device turns off when working with the cloud via MQTT, disable unnecessary
services and reduce the frequency of sending reports.
Also keep in mind that the distance from the WiFi router matters in regards to the energy consumption.

2.2. Finding a device on your local network
You can locate the device via mDNS.
The hostname of device is whatwatt-<last 6 hexadecimal upper-case letters of device identifier>.local
You need to search for the HTTP service: _http.tcp of name whatwatt Go ABCDEF (where ABCDEF is the
last 6 hexadecimal upper-case letters of device identifier).
In TXT record for service, you can find the device id and device type. The device type for Whatwatt GO is
equal to 100.
Example result
ens38 IPv4 Whatwatt Go 9F8124 WebUI Web Site local
hostname = [Whatwatt-9F8124.local]
address = [192.168.99.176]
port = [80]
txt = ["id=A842E39F8124" "type=100"]

2.3. Reading general system information
System information can be read using HTTP. To do this, make a GET request with the path api/v1/
system.

Note – If you have set a password for the Web UI interface, then each HTTP request requires the
credentials to be passed in the form of Basic-Authentication.

Example response
{
 "device":{
 "name":"",
 "id":"A842E39F8124",
 "model":"WW_Go_1.1",
 "firmware":"1.2.6",
 "upgrade_capable":true,
 "date":"2025-01-22",
 "time":"11:25:31",
 "time_since_boot":166,
 "last_reboot":{
 "date":"2025-01-22",
 "time":"11:22:45"
 },
 "plug":{
 "v_usb":5.25,
 "v_mbus":0,
 "v_p1":5.23,
 "v_scap":4.75

Endpoint api/v1/system

Method GET
Response content type application/json

©2025 whatwatt Integration via REST/MQTT · v2.0 / 6 60

 }
 },
 "clouds":{
 "whatwatt":{
 "enabled":true,
 "connected":true
 },
 "mystrom":{
 "enabled":false,
 "status":"DISABLED"
 },
 "solar_manager":{
 "enabled":false,
 "connected":false
 },
 "mqtc":{
 "enabled":false,
 "connected":false
 }
 },
 "meter":{
 "status":"OK",
 "interface":"P1",
 "id":"20000741",
 "manufacturer":"Ensor",
 "type":"ESR51030712084367",
 "model":"1ESR0012084367",
 "protocol":"DSMR",
 "protocol_version":"5.0",
 "report_interval":0.998,
 "tariff":1,
 "date":"2025-01-22",
 "time":"11:25:31"
 },
 "wifi":{
 "ssid":"sjj",
 "bssid":"DC15C84FBAB6",
 "channel":13,
 "ht":"20",
 "rssi":-35,
 "signal":100,
 "auth_mode":"WPA2-WPA3",
 "pairwise_cipher":"CCMP",
 "group_cipher":"CCMP",
 "phy":"bgn",
 "wps":false,
 "country":"CH",
 "mac":"A842E39F8124",
 "ip":"192.168.99.176",
 "mask":"255.255.255.0",
 "gateway":"192.168.99.1",
 "dns":"0.0.0.0",
 "status":"OK",
 "mode":"STA"
 },
 "sd_card":{
 "installed":true,
 "type":"SDHC/SDXC",
 "size":7618,
 "speed":20
 }
}

©2025 whatwatt Integration via REST/MQTT · v2.0 / 7 60

JSON object fields description

Field Type Range Description

.device.name string 0..31 You can set device name used Web UI System >
Name

.device.id string 12 upper-case
hexadecimal letters

The unique identifier of device

.device.model string The model of device

.device.firmware string Firmware version installed on device

.device.date string YYYY-MM-DD System date in local time zone

.device.time string HH:MM:SS System time in local time zone

.device.time_since_reboot int Seconds from last reboot

.device.last_reboot.date string YYYY-MM-DD Date of last reboot in local time zone

.device.last_reboot.time string HH:MM:SS Time of last reboot in local time zone

.device.plug.v_usb double

.device.plug.v_mbus double

.device.plug.v_p1 double

.device.plug.v_scap double In the case of powering the device from the
meter via the M-bus and many enabled services,
check if this voltage does not drop below 4.5V. If
the voltage keeps dropping since the device is
turned on, reduce the number of services turned
on or the report times.

.clouds.whatwatt.enabled boolean Status is the whatwatt cloud enabled

.clouds.whatwatt.connected boolean Status is there a connection to the cloud
whatwatt

.clouds.mystrom.enabled boolean Status if myStrom Cloud is enabled

.clouds.mystrom.status string DISABLED
DISCONNECTED
WAITING TIME
CONNECTING
DO HANDSHAKE
CONNECTED
REGISTERED

myStrom Service Status

.clouds.solar_manager.enable
d

boolean Status if Solar Manager Cloud is enabled

.clouds.solar_manager.connec
ted

boolean Status: whether there is a connection to the
Solar Manager cloud

.clouds.mqtc.enabled boolean Status if the local MQTT client is enabled

.clouds.mqtc.connected boolean Status if the local MQTT client is connected

.meter.status string NOT CONNECTED
NO DATA
RECOGNITION
OK
ENCRYPTION KEY
KEY REQUIRED
NOT RECOGNIZED

©2025 whatwatt Integration via REST/MQTT · v2.0 / 8 60

.meter.interface string NONE
P1
MBUS
TTL
MEP

Type of meter interface used, physical layer

.meter.id string Meter identifier

.meter.manufacturer string Meter manufacturer if specified

.meter.type string Meter type if specified

.meter.model string Meter model if specified

.meter.protocol string DSMR
DLMS
KMP
MEP
MBUS

Data protocol, logical layer

.meter.protocol_version string Meter protocol version if specified

.meter.report_interval double Meter report interval

.meter.tariff uint 1, 2 Current tariff on meter if specified then value is
different from zero

.meter.date string Date on meter in local time zone

.meter.time string Time on meter in local time zone

.wifi.ssid string 1..32 The SSID (Service Set Identifier) is the name of a
Wi-Fi network. It’s the identifier that devices use
to connect to the correct wireless network
among multiple available networks.

.wifi.bssid string 12 upper-case
hexadecimal letters

The BSSID (Basic Service Set Identifier) is the
MAC (Media Access Control) address of a
wireless access point or router. It uniquely
identifies each access point in a Wi-Fi network.

.wifi.channel uint 1..13 A Wi-Fi channel is a specific frequency range
within a Wi-Fi band that routers and devices use
to communicate wirelessly.

.wifi.ht string 20
40+
40-

Wi-Fi HT (High Throughput) is a mode used in
the Wi-Fi 802.11n standard that increases the
network’s data throughput. It uses MIMO
(Multiple Input Multiple Output) technology to
transmit multiple data streams simultaneously,
enhancing network performance.

.wifi.rssi int dBm Wi-Fi RSSI: RSSI (Received Signal Strength
Indicator) measures the power level of a
received signal. It’s expressed in decibels (dBm),
with higher values (closer to zero) indicating
stronger signals. For example, -30 dBm is a very
strong signal, while -90 dBm is very weak.

.wifi.signal uint 0..100 Wi-Fi signal strength in precents

.wifi.auth_mode string open
WEP
WPA
WPA2
WPA-WPA2
EAP
WPA3
WPA2-WPA3
WAPI
OWE
WPA3-ENT

Wi-Fi auth_mode (authentication mode)
determines how device authenticate on a Wi-Fi
network.

Field Type Range Description

©2025 whatwatt Integration via REST/MQTT · v2.0 / 9 60

.wifi.pairwise_cipher string The pairwise cipher in Wi-Fi security refers to
the encryption method used to secure unicast
(one-to-one) communication between a client
device and an access point.

.wifi.group_cipher string none
WEP40
WEP104
TKIP
CCMP
TKIP-CCMP
AES-CMAC-128
SMS4
GCMP
GCMP256
AES-GMAC-128
AES-GMAC-256
unknown

The group cipher in Wi-Fi security refers to the
encryption method used to secure multicast
and broadcast communications within a Wi-Fi
network.

.wifi.phy string bgn

.wifi.wps string true or false

.wifi.country string 2 characters The Wi-Fi country code is a setting that
determines the regulatory domain for a Wi-Fi
device, such as a router or access point.

.wifi.mac 12 upper-case
hexadecimal
letters

12 upper-case
hexadecimal letters

A MAC address (Media Access Control address)
is a unique identifier assigned to a network
interface controller (NIC) for use in
communications within a network segment.

.wifi.ip IPv4 string ddD.ddD.ddD.ddD An IPv4 address assigned to an interface is a
unique identifier used to identify a device on a
network.

.wifi.mask IPv4 string ddD.ddD.ddD.ddD A netmask is a 32-bit binary mask used to divide
an IP address into subnets and specify the
network’s available hosts.

.wifi.gateway IPv4 string ddD.ddD.ddD.ddD A gateway IP address, also known as a default
gateway, is an IP address that serves as an
access point or “gateway” to other networks. It
acts as a bridge between your local network and
external networks, such as the internet.

.wifi.dns IPv4 string ddD.ddD.ddD.ddD A DNS IP address refers to the IP address of a
DNS (Domain Name System) server. The DNS
server is responsible for translating human-
readable domain names (like
www.example.com) into machine-readable IP
addresses (like 192.168.1.1).

.wifi.status string OK
Error
Disabled
Disconnected

.wifi.mode string STA

.ethernet.mac string 12 upper-case
hexadecimal letters

.ethernet.ip IPv4 string ddD.ddD.ddD.ddD Same as in the case of Wi-Fi. Small d is optional
digit, big D is always present digit

.ethernet.mask IPv4 string ddD.ddD.ddD.ddD Same as in the case of Wi-Fi. Small d is optional
digit, big D is always present digit

.ethernet.gateway IPv4 string ddD.ddD.ddD.ddD Same as in the case of Wi-Fi. Small d is optional
digit, big D is always present digit

.ethernet.dns IPv4 string ddD.ddD.ddD.ddD Same as in the case of Wi-Fi. Small d is optional
digit, big D is always present digit

Field Type Range Description

©2025 whatwatt Integration via REST/MQTT · v2.0 / 10 60

.ethernet.status string Up
Down

Ethernet interface status

.sd_card.installed boolean Is a microSD card installed in the system

.sd_card.type string Type of microSD card

.sd_card.size uint Logical size of the microSD card

.sd_card.speed uint Card bus frequency in MHz

Field Type Range Description

©2025 whatwatt Integration via REST/MQTT · v2.0 / 11 60

3. Reading meter reports with REST API HTTP

3.1. Polling method
Reading measurements from the meter is possible by calling the API api/v1/report with the GET
method.

Example response for Landis+Gyr E450

{
 "report":{
 "id":54143,
 "interval":3.055,
 "date_time":"2024-08-24T13:51:07Z",
 "instantaneous_power":{
 "active":{
 "positive":{
 "total":0.042
 },
 "negative":{
 "total":0
 }
 }
 },
 "energy":{
 "active":{
 "positive":{
 "total":47.251,
 "t1":33.388,
 "t2":14.642
 },
 "negative":{
 "total":8.965,
 "t1":7.868,
 "t2":1.097
 }
 },
 "reactive":{
 "imported":{
 "inductive":{
 "total":33.713,
 "t1":31.7,
 "t2":2.013
 },
 "capacitive":{
 "total":2.247,
 "t1":2.247,
 "t2":0
 }
 },
 "exported":{
 "inductive":{
 "total":3.555,
 "t1":2.727,
 "t2":0.828
 },
 "capacitive":{
 "total":30.562,
 "t1":4.852,
 "t2":26.951
 }
 }

Endpoint api/v1/report

Method GET
Response content type application/json

©2025 whatwatt Integration via REST/MQTT · v2.0 / 12 60

 }
 }
 },
 "meter":{
 "status":"OK",
 "interface":"MBUS",
 "protocol":"DLMS",
 "id":"636192",
 "model":"636192"
 },
 "system":{
 "id":"A842E39F8124",
 "date_time":"2024-09-02T13:02:37Z",
 "boot_id":"99D2A6A4",
 "time_since_boot":253234
 }
}

Example response for Ensor eRS801
{
 "report":{
 "id":1810,
 "interval":1.001,
 "tariff":1,
 "date_time":"2025-01-22T11:54:02Z",
 "instantaneous_power":{
 "active":{
 "positive":{
 "total":0.037,
 "l1":0.037,
 "l2":0,
 "l3":0
 },
 "negative":{
 "total":0,
 "l1":0,
 "l2":0,
 "l3":0
 }
 }
 },
 "voltage":{
 "l1":234.34,
 "l2":36.19,
 "l3":36.54
 },
 "current":{
 "l1":0.22,
 "l2":0,
 "l3":0
 },
 "energy":{
 "active":{
 "positive":{
 "total":68.092,
 "t1":44.258,
 "t2":23.834
 },
 "negative":{
 "total":0,
 "t1":0,
 "t2":0
 }
 }
 },
 "conv_factor":1
 },
 "meter":{
 "status":"OK",
©2025 whatwatt Integration via REST/MQTT · v2.0 / 13 60

 "interface":"P1",
 "protocol":"DSMR",
 "protocol_version":"5.0",
 "logical_name":"ESR51030712084367",
 "id":"20000741",
 "model":"1ESR0012084367",
 "vendor":"Ensor",
 "prefix":"ESR"
 },
 "system":{
 "id":"A842E39F8124",
 "date_time":"2025-01-22T11:54:03Z",
 "boot_id":"B3E61904",
 "time_since_boot":1878
 }
}

The API returns an object containing three main sub-objects: report, meter, and system. The report
object includes real-time measurements. The meter object provides details about the meter, and the
system object describes the system.
Note –Fields within the report object may vary, and the presence of certain fields depends on the data
sent by the meter.

Fields description

Field Type Unit Description

.report.id uint Report incremental identifier

.report.interval double s Report period

.report.tariff uint 1 - t1, 2 - t2

.report.date_time ISO8601 Time when report was generated in
local time. The default time zone is
European time zone.
CET-1CEST,M3.5.0,M10.5.0/3

.report.instantaneous_power.active.positive.total double kW Positive active instantaneous power
(A+)

.report.instantaneous_power.active.positive.l1 double kW Positive active instantaneous power
(A+) in phase L1

.report.instantaneous_power.active.positive.l2 double kW Positive active instantaneous power
(A+) in phase L2

.report.instantaneous_power.active.positive.l3 double kW Positive active instantaneous power
(A+) in phase L3

.report.instantaneous_power.active.negative.total double kW Negative active instantaneous power
(A-)

.report.instantaneous_power.active.negative.l1 double kW Negative active instantaneous power
(A-) in phase L1

.report.instantaneous_power.active.negative.l2 double kW Negative active instantaneous power
(A-) in phase L2

.report.instantaneous_power.active.negative.l3 double kW Negative active instantaneous power
(A-) in phase L3

.report.instantaneous_power.reactive.positive.total double kvar Positive reactive instantaneous power
(Q+)

.report.instantaneous_power.reactive.positive.l1 double kvar Positive reactive instantaneous power
(Q+) in phase L1

.report.instantaneous_power.reactive.positive.l1 double kvar Positive reactive instantaneous power
(Q+) in phase L2

©2025 whatwatt Integration via REST/MQTT · v2.0 / 14 60

.report.instantaneous_power.reactive.positive.l3 double kvar Positive reactive instantaneous power
(Q+) in phase L3

.report.instantaneous_power.reactive.negative.total double kvar Negative reactive instantaneous power
(Q-)

.report.instantaneous_power.reactive.negative.l1 double kvar Negative reactive instantaneous power
(Q-) in phase L1

.report.instantaneous_power.reactive.negative.l2 double kvar Negative reactive instantaneous power
(Q-) in phase L2

.report.instantaneous_power.reactive.negative.l3 double kvar Negative reactive instantaneous power
(Q-) in phase L1

.report.instantaneous_power.apparent.total double kVA Apparent instantaneous power (S+)

.report.voltage.l1 double V Instantaneous voltage (U) in phase L1

.report.voltage.l2 double V Instantaneous voltage (U) in phase L2

.report.voltage.l3 double V Instantaneous voltage (U) in phase L3

.report.current.l1 double A Instantaneous current (I) in phase L1

.report.current.l2 double A Instantaneous current (I) in phase L2

.report.current.l3 double A Instantaneous current (I) in phase L3

.report.energy.active.positive.total double kWh Positive active energy (A+) total

.report.energy.active.positive.t1 double kWh Positive active energy (A+) in tariff T1

.report.energy.active.positive.t2 double kWh Positive active energy (A+) in tariff T2

.report.energy.active.negative.total double kWh Negative active energy (A-) total

.report.energy.active.negative.t1 double kWh Negative active energy (A-) in tariff T1

.report.energy.active.negative.t2 double kWh Negative active energy (A-) in tariff T2

.report.energy.rective.positive.total double kvarh Positive reactive energy (Q+) total

.report.energy.rective.positive.t1 double kvarh Positive reactive energy (Q+) in tariff T1

.report.energy.rective.positive.t2 double kvarh Positive reactive energy (Q+) in tariff T2

.report.energy.rective.negative.total double kvarh Negative reactive energy (Q-) total

.report.energy.rective.negative.t1 double kvarh Negative reactive energy (Q-) in tariff T1

.report.energy.rective.nagative.t2 double kvarh Negative reactive energy (Q-) in tariff T2

.report.energy.reactive.imported.inductive.total double kvarh Imported inductive reactive energy in 1-
st quadrant (Q1) total

.report.energy.reactive.imported.inductive.t1 double kvarh Imported inductive reactive energy in 1-
st quadrant (Q1) in tariff T1

.report.energy.reactive.imported.inductive.t2 double kvarh Imported inductive reactive energy in 1-
st quadrant (Q1) in tariff T2

.report.energy.reactive.imported.capacitive.total double kvarh Imported capacitive reactive energy in
2-nd quadrant (Q2) total

.report.energy.reactive.imported.capacitive.t1 double kvarh Imported capacitive reactive energy in
2-nd quadr. (Q2) in tariff T1

.report.energy.reactive.imported.capacitive.t2 double kvarh Imported capacitive reactive energy in
2-nd quadr. (Q2) in tariff T2

.report.energy.reactive.exported.inductive.total double kvarh Exported inductive reactive energy in 3-
rd quadrant (Q3) total

Field Type Unit Description

©2025 whatwatt Integration via REST/MQTT · v2.0 / 15 60

.report.energy.reactive.exported.inductive.t1 double kvarh Exported inductive reactive energy in 3-
rd quadrant (Q3) in tariff T1

.report.energy.reactive.exported.inductive.t2 double kvarh Exported inductive reactive energy in 3-
rd quadrant (Q3) in tariff T2

.report.energy.reactive.exported.capacitive.total double kvarh Exported capacitive reactive energy in
4-th quadrant (Q4) total

.report.energy.reactive.exported.capacitive.t1 double kvarh Exported capacitive reactive energy in
4-th quadr. (Q4) in tariff T1

.report.energy.reactive.exported.capacitive.t2 double kvarh Exported capacitive reactive energy in
4-th quadr. (Q4) in tariff T2

.report.max_demand.active.positive.total double kW Positive active maximum demand (A+)
total

.report.max_demand.active.positive.t1 double kW Positive active maximum demand (A+)
in tariff T1

.report.max_demand.active.positive.t2 double kW Positive active maximum demand (A+)
in tariff T2

.report.max_demand.active.negative.total double kW Negative active maximum demand (A-)
total

.report.max_demand.active.negative.t1 double kW Negative active maximum demand (A-)
in tariff T1

.report.max_demand.active.negative.t2 double kW Negative active maximum demand (A-)
in tariff T2

.report.power_factor double Instantaneous power factor

.report.conv_factor uint Conversion coefficient, the value of the
integer by which instantaneous power,
energy, current, max demand will be
multiplied

.meter.status string NOT
CONNECTED
NO DATA
RECOGNITION
OK
ENCRYPTION
KEY
KEY REQUIRED
NOT
RECOGNIZED

Enumerated string

.meter.interface string P1
TTL
MBUS

Physical interface

.meter.protocol string DSMR
DLMS
KMP
MEP

Logical interface

.meter.protocol_version string Communication protocol version

.meter.logical_name string Meter logical name

.meter.id string Meter identifier, usually serial number

.meter.model string Meter model in case it could be
identified

.meter.vendor string Meter supplier name, if identifiable

.meter.prefix string 3 letter vendor prefixes

.system.id string whatwatt Go unique identifier

Field Type Unit Description

©2025 whatwatt Integration via REST/MQTT · v2.0 / 16 60

3.2. Streaming method

To use this method, you must specify connection/keep-alive in the request.
Data will be sent at the same frequency as the meter sends reports.

Note – You can only establish one connection to this endpoint, if disconnected reconnect.

Example event stream data. Measurement data is sent in a live event.

event: live
data:
{"P_In":0.036,"P_Out":0,"P_P1_In":0,"P_P2_In":0,"P_P3_In":0,"P_P1_Out":0,"P_P2_Out"
:0,"P_P3_Out":0,"P_P_In":0,"P_P_In_T1":0,"P_P_In_T2":0,"I_P1":0,"I_P2":0,"I_P3":0,"
V_P1":0,"V_P2":0,"V_P3":0,"rP_In":0,"rP_Out":0,"PF":0,"E_In":47.251,"E_In_T1":33.38
8,"E_In_T2":14.668,"E_Out":8.965,"E_Out_T1":7.868,"E_Out_T2":1.097,"rE_In":0,"rE_Ou
t":0,"Date":"2024-08-24","Time":"14:34:00","Uptime":71.05}

In case of this API all fields are always sent, even if the meter does not send such value, then the field
value is zero or empty string.

Fields in data object

.system.date_time ISO8601 Local date time for time zone

.system.boot_id string Random string generated after each
reboot

.system.time_since_boot double s Time in second since boot

Field Type Unit Description

Endpoint api/v1/live
Method GET
Response content type text/event-stream

Field Type Unit Description

P_In double kW Positive active instantaneous power (A+)

P_Out double kW Negative active instantaneous power (A-)

P_P1_In double kW Positive active instantaneous power (A+) in phase L1

P_P2_In double kW Positive active instantaneous power (A+) in phase L2

P_P3_In double kW Positive active instantaneous power (A+) in phase L3

P_P1_Out double kW Negative active instantaneous power (A-) in phase L1

P_P2_Out double kW Negative active instantaneous power (A-) in phase L2

P_P3_Out double kW Negative active instantaneous power (A-) in phase L3

P_P_In double kW Positive active maximum demand (A+) total

P_P_In_T1 double kW Positive active maximum demand (A+) in tariff T1

P_P_In_T2 double kW Positive active maximum demand (A+) in tariff T2

©2025 whatwatt Integration via REST/MQTT · v2.0 / 17 60

I_P1 double A Instantaneous current (I) in phase L1

I_P2 double A Instantaneous current (I) in phase L2

I_P3 double A Instantaneous current (I) in phase L1

V_P1 double V Instantaneous voltage (U) in phase L1

V_P2 double V Instantaneous voltage (U) in phase L2

V_P3 double V Instantaneous voltage (U) in phase L3

rP_In double kvar Positive reactive instantaneous power (Q+)

rP_Out double kvar Negative reactive instantaneous power (Q-)

PF double Instantaneous power factor

E_In double kWh Positive active energy (A+) total

E_In_T1 double kWh Positive active energy (A+) in tariff T1

E_In_T2 double kWh Positive active energy (A+) in tariff T2

E_Out double kWh Negative active energy (A-) total

E_Out_T1 double kWh Negative active energy (A-) in tariff T1

E_Out_T2 double kWh Negative active energy (A-) in tariff T2

rE_In double kvarh Positive reactive energy (Q+) total

rE_Out double kvarh Negative reactive energy (Q-) total

Date string Y-m-d State the date in the format year-month-day based on local time

Time string H:M:S provide the time in local format as hour:minute:second

Uptime double hour System uptime

Field Type Unit Description

©2025 whatwatt Integration via REST/MQTT · v2.0 / 18 60

4. Integration over MQTT client
The device can be connected to the MQTT broker using the built-in MQTT client. The MQTT client
supports unencrypted and encrypted connections.
Note – whatwatt Go will only publish values if a meter is connected.
HTTP REST API to configure MQTT client (you can also do it from the device's WebUI)

MQTT settings object description

Endpoint api/v1/mqtt/settings

Method GET, POST, PUT

Response content type application/json

Field Type Default Range Remarks

.enable boolean false Enables or disables the MQTT client.

.url string empty
string

0..127, should start with mqtt:// or
mqtts://

mqtt - is for not encrypted TCP based
connections
mqtts - if for encrypted TLS based
connections

.username string empty
string

0..127 The username is a unique identifier for
the client, allowing the broker to
manage and control access levels.

.password string empty
string

0..127 This field is not returned on read (GET),
instead the password_len field is
returned which contains the length of
the password, zero if a password is not
set.

.client_id string empty
string

0..63 The client ID is a unique identifier
assigned to each client connecting to
the MQTT broker. It is used to identify
the client and manage its connection
state. The client ID must be unique for
each client connected to the same
broker; otherwise, the broker will
disconnect the existing client with the
same ID.

.skip_cn_check boolean false Skips server certificate Common Name
validation.

.publish.topic string empty
string

0..127 An MQTT publish topic is a string that
the MQTT client uses to identify where
to send messages.

.publish.template string empty
string

0..1023 The published payload template.

.broker.certificate string null Custom broker certificate (in section 5.4
the filename is ca.crt). Should be
specified in PEM format.

.client.certificate string null Client certificate for TLS mutual
authentication (in section 5.4 the
filename is whatwatt.crt), not required if
mutual authentication is not needed.
Must be provided with client.key. Should
be specified in PEM format.

©2025 whatwatt Integration via REST/MQTT · v2.0 / 19 60

Note – The maximum size of the set JSON cannot exceed 8 kB.

Example response – read by GET method

{
 "enable":true,
 "url":"mqtts://akenza.io",
 "username":"akenza",
 "client_id":"whatwatt",
 "skip_cn_check":false,
 "publish":{
 "topic":"test",
 "template": "{\n\t\"P_In\": ${1_7_1},\n\t\"P_Out\": ${2_7_1},\n\t\"E_In\":
${1_8_0},\n\t\"E_Out\": ${2_8_0},\n\t\"Meter\": {\n\t\t\"DateTime\": \"$
{meter.date_time}\"\n\t},\n\t\"Sys\": {\n\t\t\"Id\": \"${sys.id}\"\n\t}\n}"
 },
 "password_len": 0
}

To set the value, send the same object as you received, add the password field if required. To replace the
entire configuration use the POST method, to update the configuration, e.g. by sending one field, use the
PUT method (then the password will not be deleted). If you want to delete any of the certificate, key,
key_password fields set the field value to null in JSON.
It is also possible to set the period with which reports will be sent via MQTT, the default period is 30s but
if the meter sends reports less often it will be longer. You can change this setting via WebUI in the
System > Interval to Systems section.

4.1.1. Template Description
The message published by the client is defined using a template, the message format can be anything
but always text.
You can embed variables in the template, these can both be measurement and system variables.
A variable in a template is embedded in a section starting with a dollar sign, followed by an opening
curly brace, the variable name, and a closing curly brace: ${variable_name}.
The available variables are predefined, at this time you cannot define your own.

Note – If a variable appears in the template that is not resolved, then the variable will not be replaced
and the entire ${some_undefined_variable} string will be in the output message. Be careful when
integrating with your system, it may happen that one of the variables is not sent by the meter, the
variable will take the value null in case of a numeric variable or an empty string in case of a string
variable. Some meters send values alternately and after power on the device, they will be determined
only after some time, during this time some variables may not be correctly substituted.

.client.key string null Client private key for TLS mutual
authentication (in section 5.4 the
filename is whatwatt.key), not required
if mutual authentication is not needed.
This field is not returned on read (GET),
instead the key_len field is returned
which contains the length of the
certificate, zero if a password is not set.

.client.key_password string null 0..255 Client key decryption password.
Required only in case when client key is
protected with password. This field is
not returned on read (GET), instead the
key_password_len field is returned
which contains the length of the key
password, zero if no password is set.

Field Type Default Range Remarks

©2025 whatwatt Integration via REST/MQTT · v2.0 / 20 60

Example template
{
 "P_In": 0,
 "P_Out": 4.286,
 "E_In": 87.104,
 "E_Out": 50.369,
 "Meter": {
 "DateTime": "2025-03-21T10:54:02Z"
 },
 "Sys": {
 "Id": "000000000000"
 }
}

Note – This is not valid JSON. The JSON will only be valid when all variables are resolved. Also note that
some variables are always a number (written as text) and some are text, in the JSON payload you need
to enclose text variables in quotes.

This template will generate a message in JSON format after substituting variables
{
 "sys_id":"A842E39F8124",
 "meter_id":"636192",
 "time":1725281386,
 "tariff":0,
 "power_in":1.1,
 "power_out":0,
 "energy_in":123.4,
 "energy_out":0
}

Possible variables
The first column Name usually refers to short OBIS form part C.D.E. Keep in mind that the meter does
not send all fields. The value returned for a network interface depends on which one is connected.

Name Type Unit Description

1_8_0 double kWh Positive active energy (A+) total

energy.in double kWh Positive active energy (A+) total

1_8_1 double kWh Positive active energy (A+) in tariff T1

1_8_2 double kWh Positive active energy (A+) in tariff T2

2_8_0 double kWh Negative active energy (A-) total

energy.out double kWh Negative active energy (A-) total

2_8_1 double kWh Negative active energy (A-) in tariff T1

2_8_2 double kWh Negative active energy (A-) in tariff T2

3_8_0 double kvarh Positive reactive energy (Q+) total

3_8_1 double kvarh Positive reactive energy (Q+) in tariff T1

3_8_2 double kvarh Positive reactive energy (Q+) in tariff T2

4_8_0 double kvarh Negative reactive energy (Q-) total

4_8_1 double kvarh Negative reactive energy (Q-) in tariff T1

4_8_2 double kvarh Negative reactive energy (Q-) in tariff T2

5_8_0 double kvarh Imported inductive reactive energy in 1-st quadrant (Q1) total

5_8_1 double kvarh Imported inductive reactive energy in 1-st quadrant (Q1) in tariff T1

©2025 whatwatt Integration via REST/MQTT · v2.0 / 21 60

5_8_2 double kvarh Imported inductive reactive energy in 1-st quadrant (Q1) in tariff T2

6_8_0 double kvarh Imported capacitive reactive energy in 2-nd quadrant (Q2) total

6_8_1 double kvarh Imported capacitive reactive energy in 2-nd quadr. (Q2) in tariff T1

6_8_2 double kvarh Imported capacitive reactive energy in 2-nd quadr. (Q2) in tariff T2

7_8_0 double kvarh Exported inductive reactive energy in 3-rd quadrant (Q3) total

7_8_1 double kvarh Exported inductive reactive energy in 3-rd quadrant (Q3) in tariff T1

7_8_2 double kvarh Exported inductive reactive energy in 3-rd quadrant (Q3) in tariff T2

8_8_0 double kvarh Exported capacitive reactive energy in 4-th quadrant (Q4) total

8_8_1 double kvarh Exported capacitive reactive energy in 4-th quadr. (Q4) in tariff T1

8_8_2 double kvarh Exported capacitive reactive energy in 4-th quadr. (Q4) in tariff T2

1_6_0 double kW Positive active maximum demand (A+) total

1_6_1 double kW Positive active maximum demand (A+) in tariff T1

1_6_2 double kW Positive active maximum demand (A+) in tariff T2

2_6_0 double kW Negative active maximum demand (A-) total

2_6_1 double kW Negative active maximum demand (A-) in tariff T1

2_6_2 double kW Negative active maximum demand (A-) in tariff T2

1_7_0 double kW Positive active instantaneous power (A+)

power.in double kW Positive active instantaneous power (A+)

21_7_0 double kW Positive active instantaneous power (A+) in phase L1

41_7_0 double kW Positive active instantaneous power (A+) in phase L2

61_7_0 double kW Positive active instantaneous power (A+) in phase L3

2_7_0 double kW Negative active instantaneous power (A-)

power.out double kW Negative active instantaneous power (A-)

22_7_0 double kW Negative active instantaneous power (A-) in phase L1

42_7_0 double kW Negative active instantaneous power (A-) in phase L2

62_7_0 double kW Negative active instantaneous power (A-) in phase L3

3_7_0 double kvar Positive reactive instantaneous power (Q+)

23_7_0 double kvar Positive reactive instantaneous power (Q+) in phase L1

43_7_0 double kvar Positive reactive instantaneous power (Q+) in phase L2

63_7_0 double kvar Positive reactive instantaneous power (Q+) in phase L3

4_7_0 double kvar Negative reactive instantaneous power (Q-)

24_7_0 double kvar Negative reactive instantaneous power (Q-) in phase L1

44_7_0 double kvar Negative reactive instantaneous power (Q-) in phase L2

64_7_0 double kvar Negative reactive instantaneous power (Q-) in phase L3

9_7_0 double kVA Apparent instantaneous power (S+)

31_7_0 double A Instantaneous current (I) in phase L1

51_7_0 double A Instantaneous current (I) in phase L1

Name Type Unit Description

©2025 whatwatt Integration via REST/MQTT · v2.0 / 22 60

71_7_0 double A Instantaneous current (I) in phase L3

s31_7_0 double A Signed instantaneous current (I) in phase L1

s51_7_0 double A Signed instantaneous current (I) in phase L2

s71_7_0 double A Signed instantaneous current (I) in phase L3

32_7_0 double V Instantaneous voltage (U) in phase L1

52_7_0 double V Instantaneous voltage (U) in phase L2

72_7_0 double V Instantaneous voltage (U) in phase L3

13_7_0 double Instantaneous power factor

tariff uint 1, 2

conv_factor double Conversion coefficient, the value of the integer by which
instantaneous power, energy, current, max demand will be multiplied

timestamp uint UTC UNIX timestamp

meter.date_time string ISO8601 Report date time in local time

meter.id string Meter ID

meter.type string Meter type

meter.vendor string Meter vendor

meter.model string Model of meter

meter.interface string P1
TTL
MBUS
MEP

meter.protocol string DSMR
DLMS
KMP
MEP

meter.protocol_ver string Meter protocol version

meter.status string NOT CONNECTED
NO DATA
RECOGNITION
OK
ENCRYPTION KEY
KEY REQUIRED
NOT RECOGNIZED

Status ENCRYPTION KEY meaning that something wrong is with
encryption key, it can be incorrect or additional key is needed.

sys.name string Name of device (can be set WebUI)

sys.id string WhatWhat Go system identifier

sys.firmware string Firmware version

sys.date_time string ISO8601 System local time

Name Type Unit Description

©2025 whatwatt Integration via REST/MQTT · v2.0 / 23 60

4.1.2. Reading variables locally

plug.interface string NONE
P1
TTL
MBUS
MEP

Physical interface connected to the device

plug.voltage.usb double V

plug.voltage.p1 double V

plug.voltage.mbus double V

wifi.mode string off
sta
ap
apsta
nan

Wi-Fi operation mode

wifi.sta.status string disabled
disconnected
error
ok

Connection status

wifi.sta.ssid string Name of AP network - name of network where device is connected

wifi.sta.bssid string MAC MAC address of AP

wifi.sta.rssi int dBm WiFi received signal strength indication

wifi.sta.channel uint 1-13 Wi-Fi channel

wifi.sta.mac string MAC MAC address of Wi-Fi interface

wifi.sta.ip string IPv4 IPv4 address assigned to Wi-Fi interface

wifi.sta.mask string IPv4 IPv4 netmask assigned to Wi-Fi interface

wifi.sta.gw string IPv4 IPv4 gateway address assigned to Wi-Fi interface

wifi.sta.dns string IPv4 IPv4 DNS server assigned to Wi-Fi interface

eth.state string up
down

Status of Ethernet

eth.mac string MAC MAC address of Ethernet interface

eth.ip string IPv4 IPv4 address assigned to Ethernet interface

eth.mask string IPv4 IPv4 netmask assigned to Ethernet interface

eth.gw string IPv4 IPv4 gateway address assigned to Ethernet interface

eth.dns string IPv4 IPv4 DNS server assigned to Ethernet interface

Name Type Unit Description

Endpoint api/v1/variables

Method GET

Response content type application/json

©2025 whatwatt Integration via REST/MQTT · v2.0 / 24 60

©2025 whatwatt Integration via REST/MQTT · v2.0 / 25 60

Example result
[
 {
 "sys.name":""
 },
 {
 "sys.id":"A842E39F8124"
 },
 {
 "sys.firmware":"1.2.15"
 },
 {
 "sys.date_time":"2025-02-20T17:49:45Z"
 },
 {
 "1_8_0":"24.087"
 },
 {
 "energy.in":"24.087"
 },
 {
 "1_8_1":"null"
 },
 {
 "1_8_2":"null"
 },
 {
 "2_8_0":"0.004"
 },
 {
 "energy.out":"0.004"
 },
 {
 "2_8_1":"null"
 },
 {
 "2_8_2":"null"
 },
 {
 "3_8_0":"10.505"
 },
 {
 "3_8_1":"null"
 },
 {
 "3_8_2":"null"
 },
 {
 "4_8_0":"15.385"
 },
 {
 "4_8_1":"null"
 },
 {
 "4_8_2":"null"
 },
 {
 "5_8_0":"null"
 },
 {
 "5_8_1":"null"
 },
 {
 "5_8_2":"null"
 },
 {
 "6_8_0":"null"
 },
 {
©2025 whatwatt Integration via REST/MQTT · v2.0 / 26 60

 "6_8_1":"null"
 },
 {
 "6_8_2":"null"
 },
 {
 "7_8_0":"null"
 },
 {
 "7_8_1":"null"
 },
 {
 "7_8_2":"null"
 },
 {
 "8_8_0":"null"
 },
 {
 "8_8_1":"null"
 },
 {
 "8_8_2":"null"
 },
 {
 "1_6_0":"null"
 },
 {
 "1_6_1":"null"
 },
 {
 "1_6_2":"null"
 },
 {
 "2_6_0":"null"
 },
 {
 "2_6_1":"null"
 },
 {
 "2_6_2":"null"
 },
 {
 "1_7_0":"0.006"
 },
 {
 "power.in":"0.006"
 },
 {
 "21_7_0":"0.006"
 },
 {
 "41_7_0":"0"
 },
 {
 "61_7_0":"0"
 },
 {
 "2_7_0":"0"
 },
 {
 "power.out":"0"
 },
 {
 "22_7_0":"0"
 },
 {
 "42_7_0":"0"
 },
 {
 "62_7_0":"0"
©2025 whatwatt Integration via REST/MQTT · v2.0 / 27 60

 },
 {
 "3_7_0":"null"
 },
 {
 "23_7_0":"0"
 },
 {
 "43_7_0":"0"
 },
 {
 "63_7_0":"0"
 },
 {
 "4_7_0":"null"
 },
 {
 "24_7_0":"0.007"
 },
 {
 "44_7_0":"0"
 },
 {
 "64_7_0":"0"
 },
 {
 "9_7_0":"null"
 },
 {
 "31_7_0":"0.06"
 },
 {
 "51_7_0":"0"
 },
 {
 "71_7_0":"0"
 },
 {
 "32_7_0":"233"
 },
 {
 "52_7_0":"0"
 },
 {
 "72_7_0":"0"
 },
 {
 "13_7_0":"null"
 },
 {
 "tariff":"2"
 },
 {
 "conv_factor":"1"
 },
 {
 "timestamp":"1735542122"
 },
 {
 "meter.date_time":"2024-12-30T08:02:02Z"
 },
 {
 "meter.id":""
 },
 {
 "meter.type":"LGZ1030662444349"
 },
 {
 "meter.vendor":"Landis+Gyr"
 },
©2025 whatwatt Integration via REST/MQTT · v2.0 / 28 60

 {
 "meter.model":""
 },
 {
 "meter.interface":"MBUS"
 },
 {
 "meter.protocol":"DLMS"
 },
 {
 "meter.protocol_ver":""
 },
 {
 "meter.status":"OK"
 },
 {
 "plug.interface":"MBUS"
 },
 {
 "plug.voltage.usb":"5.272"
 },
 {
 "plug.voltage.p1":"2.844"
 },
 {
 "plug.voltage.mbus":"10.952"
 },
 {
 "wifi.mode":"sta"
 },
 {
 "wifi.sta.status":"ok"
 },
 {
 "wifi.sta.ssid":"sjj"
 },
 {
 "wifi.sta.bssid":"DC15C84FBAB6"
 },
 {
 "wifi.sta.rssi":"-30"
 },
 {
 "wifi.sta.channel":"13"
 },
 {
 "wifi.sta.mac":"A842E39F8124"
 },
 {
 "wifi.sta.ip":"192.168.99.176"
 },
 {
 "wifi.sta.mask":"255.255.255.0"
 },
 {
 "wifi.sta.gw":"192.168.99.1"
 },
 {
 "wifi.sta.dns":"0.0.0.0"
 }
]

©2025 whatwatt Integration via REST/MQTT · v2.0 / 29 60

5. Secure MQTT Integration

5.1. Scope
This document shows how to connect a WhatWatt Go energy meter to a local Mosquitto 2.0.21 broker
using ECDSA certificates, mutual‑TLS, and IP addresses (no hostname validation). All certificates are
stored in /etc/mosquitto/certs/. Optional production‑grade notes are included at the end.

5.2. Prerequisites

5.3. Install Mosquitto & clients

sudo apt update
sudo apt install --yes mosquitto mosquitto-clients openssl
Mosquitto starts automatically; verify:
systemctl status mosquitto

5.4. Generate an ECDSA‑P256 Certificate Chain

#Root CA	
openssl ecparam -name prime256v1 -genkey -noout -out ca.key	
openssl req -x509 -new -key ca.key -sha256 -days 3650 \	
 -subj "/C=US/O=Lab/OU=IoT/CN=Lab ECC Root CA" \	
 -out ca.crt	
	
#Mosquitto server cert (CN may stay mqtt.lab.local)	
openssl ecparam -name prime256v1 -genkey -noout -out server.key	
openssl req -new -key server.key \	
 -subj "/C=US/O=Lab/OU=IoT/CN=mqtt.lab.local" \	
 -out server.csr	
openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key \	
 -CAcreateserial -sha256 -days 365 -out server.crt	
	
#Client cert for the meter	
openssl ecparam -name prime256v1 -genkey -noout -out whatwatt.key	
openssl req -new -key whatwatt.key \	
 -subj "/C=US/O=Lab/OU=Metering/CN=whatwatt-001" \	
 -out whatwatt.csr	
openssl x509 -req -in whatwatt.csr -CA ca.crt -CAkey ca.key \	
 -CAcreateserial -sha256 -days 365 -out whatwatt.crt

Component Version / Notes

Lubuntu 25.04 fresh install, sudo user

Mosquitto 2.0.21 (apt repo)

OpenSSL 3.x (included)

WhatWatt Go firmware ≥ 1.7.6, REST API enabled

Python ≥ 3.8 (for provisioning script)

©2025 whatwatt Integration via REST/MQTT · v2.0 / 30 60

5.5. Deploy Certificates

sudo mkdir -p /etc/mosquitto/certs
sudo cp {ca.crt,server.crt,server.key} /etc/mosquitto/certs/
sudo chown root:mosquitto /etc/mosquitto/certs/{*.crt,*.key}
sudo chmod 640 /etc/mosquitto/certs/{*.crt,*.key}

5.6. Configure Mosquitto (/etc/mosquitto/conf.d/tls.conf)

listener 8883
protocol mqtt

cafile /etc/mosquitto/certs/ca.crt
certfile /etc/mosquitto/certs/server.crt
keyfile /etc/mosquitto/certs/server.key

require_certificate true
use_identity_as_username true
allow_anonymous false
No tls_version / ciphers override – broker auto‑negotiates (TLS 1.3 preferred).

Restart and watch the log:

sudo systemctl restart mosquitto
journalctl -u mosquitto -f

5.7. Quick Local Subscription (CLI)

mosquitto_sub -h 127.0.0.1 -p 8883 -v \
-cafile ca.crt \
-cert whatwatt.crt \
-key whatwatt.key \
-insecure \
t 'lab/energy/#'
--insecure skips the CN check, matching the device behaviour.

5.8. Provision WhatWatt Go (JSON payload)

Sample file mqtt.json (≤ 8 kB):
{
 "enable": true,
 "url": "mqtts://192.168.99.186:8883",
 "skip_cn_check": true,
 "client_id": "whatwatt-001",
 "publish": {
 "topic": "lab/energy/whatwatt-001",
 "template": "{ \"P_In\": ${1_7_0}, \"P_Out\": ${2_7_0} }"
 },
 "broker": { "certificate": "-----BEGIN CERTIFICATE-----\n...ca...\n-----END
CERTIFICATE-----\n" },
 "client": {
 "certificate": "-----BEGIN CERTIFICATE-----\n...whatwatt...\n-----END
CERTIFICATE-----\n",
 "key": "-----BEGIN EC PRIVATE KEY-----\n...key...\n-----END EC PRIVATE KEY-----
\n"
 }
}

Upload:

curl -X POST http://192.168.99.176/api/v1/mqtt/settings \
 -H "Content-Type: application/json" \
 --data-binary @mqtt.json

©2025 whatwatt Integration via REST/MQTT · v2.0 / 31 60

5.9. Parameterised Provisioning Script (setup_mqtt.py)
#!/usr/bin/env python3
"""Configure a WhatWatt Go device over REST.
Example:
 python setup_mqtt.py --device 192.168.99.176 --broker 192.168.99.186 \
 --topic lab/energy/whatwatt-001 --id whatwatt-001
"""
import argparse, pathlib, requests, json, sys

def args():
 p = argparse.ArgumentParser()
 p.add_argument("--device", default="192.168.99.176")
 p.add_argument("--broker", default="192.168.99.186")
 p.add_argument("--port", type=int, default=8883)
 p.add_argument("--id", default="whatwatt-001")
 p.add_argument("--topic", default="lab/energy/whatwatt-001")
 p.add_argument("--template", default='{"P_In": ${1_7_0}, "P_Out": ${2_7_0}}')
 p.add_argument("--ca", default="ca.crt")
 p.add_argument("--cert", default="whatwatt.crt")
 p.add_argument("--key", default="whatwatt.key")
 return p.parse_args()

a = args()
api = f"http://{a.device}/api/v1/mqtt/settings"

data = {
 "enable": True,
 "url": f"mqtts://{a.broker}:{a.port}",
 "skip_cn_check": True,
 "client_id": a.id,
 "publish": {"topic": a.topic, "template": a.template},
 "broker": {"certificate": pathlib.Path(a.ca).read_text()},
 "client": {
 "certificate": pathlib.Path(a.cert).read_text(),
 "key": pathlib.Path(a.key).read_text()
 }
}
try:
 r = requests.post(api, json=data, timeout=10)
 r.raise_for_status()
 print("Success:", json.dumps(r.json(), indent=2))
except (requests.RequestException, OSError) as e:
 sys.exit(f"Error: {e}")

Mark executable (chmod +x setup_mqtt.py) and run with desired arguments.

5.10. Production Hardening

• Hostname validation – issue server cert with SAN
DNS:broker.example.com; remove skip_cn_check & --insecure.

• Unique client certificates per meter → granular ACLs + easy revocation.

• Security Level 2 default is fine; you may limit ciphers to GCM/CHACHA suites only.

• Automate certificate rotation (yearly) via your PKI or tools like CFSSL.

• Restrict broker to trusted VLAN / firewall ingress to TCP 8883.

©2025 whatwatt Integration via REST/MQTT · v2.0 / 32 60

6. Settings

6.1. General convention for using local REST API
The local REST API allows you to read, overwrite, update, or delete values. Typically, the body is returned
and processed in JSON format.
The activity is determined by the HTTP method used in the API request

• The GET method allows you to read the value.

• The POST method overwrites all values; if no value is sent in JSON, it defaults to the same value as if
the device was restored to factory settings.

• The PUT method allows you to update selected fields; the JSON you upload should contain the fields
you selected.

• The DELETE method deletes all configuration for the selected endpoint and is only available for
selected endpoints.

In addition, the use of a local REST API follows the general conventions for the use of local APIs, which
ensures compatibility and optimal communication performance between different components of the
system.

Execution of each method returns an HTTP status code

• 200 success along with the response, usually in JSON format,

• 204 execution without a return message,

• 400 bad request, invalid parameters, ranges in JSON object,

• 401 unauthorized,

• 404 endpoint not found, disabled or unavailable,

• 500 internal problem of the device,

• 503 service unavailable.

6.2. Service management and basic settings
This endpoint enables management of services and basic system settings.
HTTP REST API to configure services (you can also do it from the device's WebUI):

Settings JSON object description

Endpoint api/v1/settings

Method GET, POST, PUT

Response content type application/json

Field Type Default Range Remarks

.system.name string empty string 0..31 System name, device name,
name given by the user

.system.host_name string whatwatt_XXXXXX, where X
is the last 6 digits of the
device ID

0..31 Hostname as seen on the
network

.system.protection boolean false Specifies whether the password
for the HTTP server, and thus the
REST API and local WebUI,
should be required

©2025 whatwatt Integration via REST/MQTT · v2.0 / 33 60

*Not described fields are not currently supported

Example response on GET request
{
 "system":{
 "name":"",
 "host_name":"whatwatt_9F8124",
 "protection":false
 },
 "services":{
 "cloud":{
 "what_watt":true,
 "solar_manager":false,
 "mystrom":false
 },
 "local":{
 "solar_manager":false
 },
 "broadcast":true,
 "other_energy_provider":false,
 "report_interval":30,
 "log":true,
 "meter_proxy":false,
 "sd":{
 "frequency":15,
 "enable":false
 }
 }
}

.system.password string empty string 0..31 HTTP server password. The
password is not returned when
reading this API

.services.cloud.what_watt boolean true Enables/disables whatwatt (cloud
connection)

.services.cloud.solar_manager boolean false Enables/disables the Solar
Manager service (cloud
connection)

.services.cloud.mystrom boolean true Enables/disables myStrom (cloud
connection)

.services.local.solar_manager boolean true Enables/disables the local Solar
Manager integration API

.services.broadcast boolean true Enables/disables mDNS
broadcasting

.services.report_interval uint 30 Frequency of reporting to the
cloud, currently only applies to
custom MQTT integration

.services.sd.frequency uint 15 1..1440 Frequency in seconds of writing
reports to the SD card

.services.sd.enable boolean false Enable/disable saving reports to
SD card

.services.modbus.enable boolean false enables/disables the Modbus
TCP Slave Server

.services.modbus.port uint 502 1..65535 port on which the Modbus TCP
Slave Server is to run

Field Type Default Range Remarks

©2025 whatwatt Integration via REST/MQTT · v2.0 / 34 60

6.3. Meter communication settings
This endpoint allows you to set the parameters of communication with the meter. Mainly the settings of
the serial port and the physical layer of communication.
HTTP REST API to configure meter port (you can also do it from the device's WebUI):

Meter settings JSON object description

Endpoint api/v1/meter/settings

Method GET, POST, PUT

Response content type application/json

Field Type Default Range Remarks

.baudrate uint 115200 300..115200 Data transfer rate over serial interface

.parity string none none
odd
even

Parity control of data transmitted over the serial
interface

.stop_bits string 1 1
1.5
2

Number of stop bits in serial transmission

.encryption boolean false Enable data encryption at the logical layer

.encryption_key string empty
string

32..32
hexadecimal
characters

Data encryption key. The key value is not returned
when reading this API. If you want to reset the key,
set the field to 32 zeros

.authentication_key string empty
string

32..32
hexadecimal
characters

The meter authorization key on whatwatt device is
optional. The key is not returned when reading the
API. If you want to reset it, set it to 32 zeros

.tx_invert bool false Reverse the polarity of the transmission data line
in the serial interface

.rx_invert bool false Reverse the polarity of the data receiving line in the
serial interface

.auto_baudrate bool true Automatic serial port settings. The whatwatt
device will try to determine the serial port settings
such as baudrate, parity, stop_bits, tx_invert,
rx_invert based on the electrical parameters of the
serial interface

.if_type string auto auto
p1
mbus
ttl
mep

Physical interface of the meter connected to the
whatwatt device. With the auto option selected,
the whatwatt device will try to automatically
determine the type of interface, and thus the serial
port settings and the protocol used on the logical
layer

.conv_factor uint 1 1..10000 Conversion coefficient, the value of the integer by
which instantaneous power, energy, current, max
demand will be multiplied

.time_offset int 0 int32 Meter time correction, if the meter has an incorrect
time, it is possible to set an offset in seconds to
correct the time in reports processed by the device

.sync_time_offset_with_ntp bool false NTP time-based time_offset auto-following. The
time offset value is automatically adjusted. Note
that by disabling this option, the time_offset will
not be restored to the previous value or zero and
must be set separately

©2025 whatwatt Integration via REST/MQTT · v2.0 / 35 60

Example response on GET request
{
 "baudrate":115200,
 "parity":"none",
 "stop_bits":"1",
 "buffer_size":64,
 "method":"Passive Push",
 "encryption":false,
 "rx_invert":false,
 "tx_invert":false,
 "auto_baudrate":true,
 "if_type":"auto",
 "conv_factor":1,

 "time_offset":0,
 "sync_time_offset_with_ntp":false,
 "scalers_set":"default"

}

.scalers_set string default
lge570
custom

Allows you to select the scaling scheme for the
values sent by the meter, this applies to COSEM
class 3 objects. The set includes different scales
for different logical names (OBIS). A default value
will cause the device to attempt to automatically
adjust the scale, in some cases it will default to
scaling in the remaining cases. The lge570 value
is a predefined scale set for the L&G E570. The
custom set allows you to set your own scaling for
individual values

Field Type Default Range Remarks

©2025 whatwatt Integration via REST/MQTT · v2.0 / 36 60

Setting Expected value input Conversion & Storage Rules

hex A hexadecimal string whose length is an
even number of characters.

The string is parsed byte-by-byte and the resulting raw bytes are written
sequentially, starting at the base register address. Example: 0809A0B0

short A 16-bit integer (signed or unsigned). The integer is converted to big-endian byte order and stored in one
register (16 bits). Example: 1234 or -1234

int A 32-bit integer (signed or unsigned). Converted to big-endian; the two most-significant bytes are written to
the base register, the two least-significant bytes to the next register
(address + 1).

float A 32-bit floating-point number. Encoded as IEEE-754, big-endian, and stored in two consecutive
registers. Example: -1.23

double A 64-bit floating-point number. Encoded as IEEE-754, big-endian, and stored in four consecutive
registers.

Modbus Function Code Guidance for type and value

5 – Write Single Coil Use short with 0 / 1, or use hex with 0000 (OFF) or 00FF (ON). Only one register is written.

6 – Write Single Register Same approach as Function 5: choose short (integer) or hex (exact two-byte value). Exactly one
register is written.

15 – Write Multiple Coils Use hex notation. The number of registers written depends on the length of the hex string: 4 hex
characters = 1 register. Example: an 8-character string (A1B2C3D4) writes two registers.

16 – Write Multiple
Registers

You may supply hex or any numeric type (short, int, long, float, double). The data are automatically
expanded across as many consecutive registers as required by the chosen type.

double A 64-bit floating-point number.

6.4. Reading of currently applied scaler values
This endpoint allows you to read individual scale values for specific register values that the meter
transmits. This API uses a shortened convention of logical name/OBIS, which is in the format C.D.E.
The present value is the value that has been determined by the device itself at the detection stage,
covered/overridden by a set of scalers selected by the scalers_set (note that the scalers_set does not
have to cover all values).
Currently, the current value of scale factors can only be read for meters that exchange data in DLMS
format.
Scale factors apply only to COSEM Class 3 objects.

Current scalers JSON object description

Example response on GET request
[
 {
 "obis":"1.8.0",
 "scaler":0
 },
 {
 "obis":"2.8.0",
 "scaler":0
 },
 {
 "obis":"3.8.0",
 "scaler":0
 },
 {
 "obis":"4.8.0",
 "scaler":0
 },
 {
 "obis":"1.7.0",
 "scaler":0
 },
 {
 "obis":"2.7.0",
 "scaler":0
 },
 {
 "obis":"32.7.0",
 "scaler":0

Endpoint api/v1/meter/scalers/current

Method GET

Response content type application/json

Avalliable since FW version 1.2.15

Field Type Remarks

[].obis string The field value is a shorthand representation of the OBIS notation
representing the C.D.E part. Only those OBIS codes that have
been recognized by the device and belong to COSEM class 3 are
included in the response.

[].scaler int The value of the field determines the currently applied scaling
factor for the OBIS code. The scaled factor is expressed as a
power of ten (10^scaler). For example, a value of -3 means that
the output value from the meter is multiplied by 0.001, and a
value of 3 means multiplication by 1000.

©2025 whatwatt Integration via REST/MQTT · v2.0 / 37 60

 },
 {
 "obis":"52.7.0",
 "scaler":0
 },
 {
 "obis":"72.7.0",
 "scaler":0
 },
 {
 "obis":"31.7.0",
 "scaler":-2
 },
 {
 "obis":"51.7.0",
 "scaler":-2
 },
 {
 "obis":"71.7.0",
 "scaler":-2
 },
 {
 "obis":"21.7.0",
 "scaler":-2
 },
 {
 "obis":"41.7.0",
 "scaler":-2
 },
 {
 "obis":"61.7.0",
 "scaler":-2
 },
 {
 "obis":"22.7.0",
 "scaler":-2
 },
 {
 "obis":"42.7.0",
 "scaler":-2
 },
 {
 "obis":"62.7.0",
 "scaler":-2
 },
 {
 "obis":"23.7.0",
 "scaler":-2
 },
 {
 "obis":"43.7.0",
 "scaler":-2
 },
 {
 "obis":"63.7.0",
 "scaler":-2
 },
 {
 "obis":"24.7.0",
 "scaler":-2
 },
 {
 "obis":"44.7.0",
 "scaler":-2
 },
 {
 "obis":"64.7.0",
 "scaler":-2
 }
]

©2025 whatwatt Integration via REST/MQTT · v2.0 / 38 60

6.5. Meter custom scalers settings
This endpoint allows for the setting of individual scaling values for specific register values transmitted
by the meter. This API uses a shortened convention of logical name/OBIS, which is in the format C.D.E.
Currently, these settings operate exclusively for messages in the DLMS format.
Scale factors apply only to COSEM Class 3 objects.
HTTP REST API to configure individual scalers (you can also do it from the device's WebUI):

Example response on GET request

[
 {
 "obis":"1.7.0",
 "scaler":-1
 },
 {
 "obis":"2.7.0",
 "scaler":-1
 }
]

When performing the settings using the POST method, the same JSON format must be used.

6.6. Actions
This API provides a structured way to define and execute automated actions consisting of HTTP/
Modbus requests. The execution mechanism ensures asynchronous processing, with built-in
mechanisms for monitoring execution status. The API is designed for automation, integration, and
remote control of devices or services via HTTP/Modbus requests.
Note – This API is available since firmware version 1.6.1

6.6.1. Action Definition

Endpoint api/v1/meter/scalers/custom

Method GET, POST

Response content type application/json

Field Type Range Remarks

[].obis string 0..254.0..254.0..
255

This field should be formatted to represent the C.D.E
part of the logical OBIS code. For example, it can be
1.8.0. If we want to apply the scaler for all E values, such
as in the case of tariffs, we can write 1.8.255. The value
'255' indicates that the scaler will be applied to all E
values. Only OBIS codes belonging to COSEM class 3
should be defined.

[].scaler int -6..6 This field should specify the scaler value, which is
expressed in powers of ten. For example, a value of -3
will multiply the register value by 0.001, and a value of 3
will multiply it by 1000.

Endpoint api/v1/actions

Method GET, POST, DELETE

Response content type application/json

©2025 whatwatt Integration via REST/MQTT · v2.0 / 39 60

Methods
GET – Retrieve the definition of actions.
POST – Define new actions.
DELETE – Delete existing actions definition.

Object Description

Field Type Required Range Remarks

.const object No Optional object for defining constants such as
IP addresses. Constants should be defined as
object fields and can be of type string, number,
boolean, or null. Nested objects and arrays are
not supported. Constants can be referenced in
url and payload fields using ${constant_name}
syntax.

.actions[].id string Yes 1..31 Unique action identifier, which may be a name
rather than a numeric ID. Used when executing
an action.

.actions[].enable boolean No Defaults to true. Determines if an action is
active and executable. This field appears in the
return JSON only if it is false.

.actions[].requests[] array of
objects

Yes List of requests (currently only HTTP/HTTPS
requests are supported) that the action should
perform.

.actions[].requests[].http.enable boolean No Defaults to true. Specifies whether the request
should be active within the action. This field
appears in the return JSON only if it is false.

.actions[].requests[].http.url string Yes 1..255 URL for HTTP requests. Constants may be
used.

.actions[].requests[].http.method string No GET, POST,
PUT,
DELETE

HTTP method for the request.
GET by default. This field appears in the return
JSON only if it is different than GET.

.actions[].requests[].http.payload string No 0..1023 HTTP request payload. Used only for POST and
PUT methods.

.actions[].requests[].http.headers.* object of
strings

No Optional object of up to 4 HTTP headers. Each
field name should corresponds to header name,
and the field value to header value. Length of
header name + header value shouldn't exceed
253 characters.

.actions[].requests[].http.timeout floating No 0.1..10 HTTP request timeout expressed in seconds.
The default timeout is 4s. This field is optional
and appears in the return JSON only if it is set.

.actions[].requests[].modbus.enable boolean No Defaults to true. Specifies whether the request
should be active within the action. This field
appears in the return JSON only if it is false.

.actions[].requests[].modbus.host string Yes 4..63 The target device’s hostname or IP address for
the Modbus TCP connection. This identifies the
device to communicate with.

.actions[].requests[].modbus.port uint No 1..65535 The TCP port on the target device for Modbus
communication. The default Modbus TCP port
is 502, but this can be set to a different port if
the device uses one.

.actions[].requests[].modbus.unit_id uint No 0..255 The Modbus Unit Identifier (also known as
Slave ID) of the target device. This is typically a
number from 1 to 247 identifying the device on
the Modbus network (use 1 if the device is
alone or you are unsure). Default value is 0.

©2025 whatwatt Integration via REST/MQTT · v2.0 / 40 60

Modbus Type Field

Modbus Value Field

.actions[].requests[].modbus.func unit Yes 5, 6, 15, 16 The Modbus function code representing the
operation to perform. 5 is to write a single coil,
6 is to write a single register, 15 is to write
multiple coils, and 16 is to write multiple
registers.

.actions[].requests[].modbus.addres
s

uint Yes 0..65535 The starting data address for the Modbus
operation. This is the offset of the first coil or
register to access. Modbus addresses are
typically given in the range 0–65535 (where
each range corresponds to coil, input, holding
register, etc., depending on the function code).
Note: The address is zero-based as per Modbus
protocol (e.g., address 0 refers to the first coil/
register in the device’s memory block for that
function).

.actions[].requests[].modbus.type string No hex
short
int
long
float
double

Default hex. See table Modbus type field.

.actions[].requests[].modbus.value string Yes 1..492 The content of the value field must match the
data type selected in the type attribute, see
table Modbus value field.

.actions[].requests[].modbus.timeout floating No 0.1..10 Modbus request timeout expressed in seconds.
The default timeout is 5s. This field is optional
and appears in the return JSON only if it is set.

Modbus Function Code Guidance for type and value

5 – Write Single Coil Use short with 0 / 1, or use hex with 0000 (OFF) or 00FF (ON). Only one register is written.

6 – Write Single Register Same approach as Function 5: choose short (integer) or hex (exact two-byte value). Exactly
one register is written.

15 – Write Multiple Coils Use hex notation. The number of registers written depends on the length of the hex string: 4
hex characters = 1 register. Example: an 8-character string (A1B2C3D4) writes two
registers.

©2025 whatwatt Integration via REST/MQTT · v2.0 / 41 60

Setting Expected value input Conversion & Storage Rules

hex A hexadecimal string whose length is an even
number of characters.

The string is parsed byte-by-byte and the resulting raw
bytes are written sequentially, starting at the base register
address. Example: 0809A0B0

short A 16-bit integer (signed or unsigned). The integer is converted to big-endian byte order and
stored in one register (16 bits). Example: 1234 or -1234

int A 32-bit integer (signed or unsigned). Converted to big-endian; the two most-significant bytes are
written to the base register, the two least-significant bytes
to the next register (address + 1).

float A 32-bit floating-point number. Encoded as IEEE-754, big-endian, and stored in two
consecutive registers. Example: -1.23

double A 64-bit floating-point number. Encoded as IEEE-754, big-endian, and stored in four
consecutive registers.

Example configuration
{
 "const":{
 "bulb":"192.168.99.101",
 "switch":"192.168.99.151",
 "bri":"20"
 },
 "actions":[
 {
 "id":"1",
 "requests":[
 {
 "http":{
 "url":"http://192.168.0.21/api/v1/device/self",
 "method":"POST",
 "payload":"action=toggle",
 "headers":{
 "Content-Type":"application/x-www-form-urlencoded"
 }
 }
 },
 {
 "http":{
 "url":"http://${switch}/toggle",
 }
 }
]
 },
 {
 "id":"2",
 "requests":[
 {
 "http":{
 "url":"http://${bulb}/light/0?turn=on&brightness=${bri}&temp=3000",
 }
 }
]
 },
 {
 "id":"3",
 "requests":[
 {
 "http":{
 "url":"http://${bulb}/light/0",
 "method":"POST",
 "payload":"turn=off",
 "timeout":2
 }
 }
]
 },
 {
 "id":"4",
 "requests":[
 {
 "modbus":{
 "host":"192.168.99.179",
 "port":1502,
 "unit_id":1,
 "func":16,
 "address":10,
 "type":"short",
 "value":"${bri}",

16 – Write Multiple Registers You may supply hex or any numeric type (short, int, long, float, double). The data are
automatically expanded across as many consecutive registers as required by the chosen
type.

©2025 whatwatt Integration via REST/MQTT · v2.0 / 42 60

 "timeout":2
 }
 }
]
 }
]
}

Response Codes

• 200 OK – Successful retrieval or modification.

• 404 Not Found – Actions have not been set or have been deleted.

• 400 Bad Request – Invalid request format.

Note – The action definition object size cannot exceed 8191 bytes.

6.6.2. Actions Execution
Execute a specified action.

Example Request
curl -i -X POST 'http://192.168.99.176/api/v1/actions/call?id=1'

Expected Response
HTTP/1.1 202 Accepted
Content-Length: 0
Location: /api/v1/actions/status?id=139
X-Content-Type-Options: nosniff
Cache-Control: no-store, no-cache

Response Codes

• 202 Accepted – At least one request from the action definition has been queued for asynchronous
execution.

• 400 Bad Request – The action is disabled, or all action requests are disabled.

• 404 Not Found – No action found for the specified ID.

• 409 Conflict – The action is already executing and cannot be restarted until completion.

• 429 Too Many Requests – Too many requests are pending execution (max: 20 total requests across
all pending actions).

• 500 Internal Server Error – An unspecified issue occurred.

6.6.3. Checking Action Execution Status
Retrieve execution status for specified request IDs.

Endpoint api/v1/actions/call?id=<action_id>

Method POST

Endpoint api/v1/actions/status?id=<status_id>[,<status_id>]

Method GET

Response content
type

application/json

©2025 whatwatt Integration via REST/MQTT · v2.0 / 43 60

Response object

Modbus Status Codes

Field Type Remarks

.action_id string The action ID corresponding to this status entry.

.id uint Execution status ID (from the Location header returned in the action execution request).

.code uint The HTTP response code from the executed request. A value of ≤0 indicates a network or connection
issue.

.exe_time float Time taken to execute the action, in seconds.

Code Description

1 Success

-1 Generic issue

-2 Response packet is too long

-3 Response receive timeout

-4 Response receive error

-5 Invalid PDU length in response

-6 Memory error

-7 Request sent error

-8 Invalid response header

-9 Transaction ID mismatch

-10 Function mismatch

-11 Invalid exception frame

-12 Unit ID mismatch

-13 Response frame too short

-14 Response body mismatch

-15 Cannot process response

-16 Cannot resolve host

-17 Cannot connect

-19 Cannot create connection

-100 Exception base

-101 Exception: illegal function

-102 Exception: illegal data address

-103 Exception: illegal data value

-104 Exception: slave device failure

-105 Exception: acknowledge

-106 Exception: slave device busy

-107 Exception: negative acknowledge

©2025 whatwatt Integration via REST/MQTT · v2.0 / 44 60

Example Request
curl -s 'http://192.168.99.176/api/v1/actions/status?id=139'

Example Response
[
 {
 "action_id": "1",
 "id": 139,
 "code": 200,
 "exe_time": 0.133
 }
]

Notes

• The Location header in the action execution response provides the execution status ID(s).

• Multiple status IDs can be checked simultaneously by separating them with commas.

6.7. Wi-Fi network setup
This endpoint allows you to configure a connection to a Wi-Fi network.
HTTP REST API to configure wifi settings (you can also do it from the device's WebUI):

Wifi sta settings JSON object description

-108 Exception: memory parity error

-110 Exception: gateway path unavailable

-111 Exception: gateway target device failed to respond

Endpoint api/v1/wifi/sta/settings

Method GET, POST, PUT, DELETE

Response content type application/json

Field Type Default Range Remarks

.enable boolean false Enables Wi-Fi communication in station mode (the device connects to the
Router or Access Point)

.name string empty
string

1..32 The name of the Wi-Fi network you want the device to connect to (SSID).
Field is required

.password string empty
string

8..64 The password to the Wi-Fi network, if set, must be at least 8 characters
long. It is possible to enter a password in the form of a hexadecimal
notation of 64 characters. The field may remain late if the network is an
open network (without a password)

.static_ip bool false Applies to setting a static recipient instead of using a DHCP client.
Remember that when setting static addressing, address collision can
occur in the network, so you need to be sure that no other device has the
same address or will not have it. DHCP servers on Routers are usually
configured in such a way that they assign addresses in the range
192.168.X.100 to 192.168.X.200, so that static addresses for various
devices are safely set below 100 or above 200.

.ip string 0.0.0.0 String stored as an IPv4 address. This is a static IP address of the device
in the network, it can have a value e.g. 192.168.X.201 where X is a subnet
e.g. 0, 1, 2 etc.

.netmask string 0.0.0.0 String stored as an IPv4 address. This is a subnet mask, it must be set to
non-zero values if you set a static IP address. Typically, the mask value is
255.255.255.0

©2025 whatwatt Integration via REST/MQTT · v2.0 / 45 60

The DELETE method erases all Wi-Fi configuration and shuts down the client.

Example response on GET request
{
 "enable":true,
 "name":"sjj",
 "static_ip":false,
 "ip":"0.0.0.0",
 "netmask":"0.0.0.0",
 "gateway":"0.0.0.0",
 "dns":"0.0.0.0",
 "max_tx_power":0
}

6.8. Scan Wi-Fi networks
This endpoint allows you to search for nearby Wi-Fi networks. Scanning Wi-Fi networks over Ethernet is
not recommended.
HTTP REST API to scanning Wi-Fi networks (you can also do it from the device's WebUI):

Wifi scan JSON object description

.gateway string 0.0.0.0 String stored as an IPv4 address. This is the gateway address, in other
words, the address of the device (Router) to which the whatwatt device
sends data to redirect it to the Internet. The value cannot be zero in the
case of setting a static IP address. Typically, the gateway value is
192.168.X.1, where X replaces your individual gateway value

.dns string 0.0.0.0 String stored as an IPv4 address. This is the address of the DNS server,
this server is used to resolve names on the network to IP addresses, e.g.
Example.com can be resolved to 1.2.3.4. Setting this value to nonzero is
required if you set a static IP address. You can enter an external IP
address here, such as 8.8.8.8 or the same address as in the gateway field,
then the router will resolve the names

.max_power float 17 0..21 The transmission power of the Wi-Fi radio on the whatwatt device
expressed in dBm, you can increase or decrease this value. Please note
that in the case of restricted power supply options, such as powering only
from the M-bus interface without an external power supply, the amount of
power may be insufficient. Resolution is 0.5

Field Type Default Range Remarks

Endpoint api/v1/wifi/scan

Method GET

Response content type application/json

Field Type Range Remarks

[].ssid string 1..32 The SSID (Service Set Identifier) is the name of a Wi-Fi network. It’s the
identifier that devices use to connect to the correct wireless network
among multiple available networks.

[].bssid string 12 hexadecimal
characters

The BSSID (Basic Service Set Identifier) is the MAC (Media Access
Control) address of a wireless access point or router. It uniquely
identifies each access point in a Wi-Fi network.

[].channel uint 1..13 A Wi-Fi channel is a specific frequency range within a Wi-Fi band that
routers and devices use to communicate wirelessly.

[].ht string 20
40+
40-

Wi-Fi HT (High Throughput) is a mode used in the Wi-Fi 802.11n
standard that increases the network’s data throughput. It uses MIMO
(Multiple Input Multiple Output) technology to transmit multiple data
streams simultaneously, enhancing network performance.

©2025 whatwatt Integration via REST/MQTT · v2.0 / 46 60

6.9. Starting WPS pairing
This endpoint allows you to start pairing using WPS. The same can be done by pressing a button on the
device. Pairing will automatically turn off after 2 minutes if the pairing button is not pressed on the
Access Point or Router, or if there is a problem. Wi-Fi pairing via WPS can be invoked in both client mode
and whatwatt access point mode, WPS pairing can also be enabled when the device has Wi-Fi turned
off. Successful pairing automatically configures the device to operate in station/client mode. A failed
pairing reverts to the previous Wi-Fi settings if the device was already paired or turns off Wi-Fi if you
start it from the access point mode of the whatwatt device. Enabling WPS pairing over Ethernet is not
recommended.
Sent a POST request to this endpoint returns a 204 code with no message if successful.
HTTP REST API to start WPS pairing (you can also do it from the device's WebUI):

Wi-Fi Protected Setup (WPS) is a network security standard that facilitates the connection between a
router and wireless devices. It simplifies the process of connecting to a secure wireless network by
enabling users to press a physical button on the router to pair devices. The goal of WPS is to make it
easier for non-technical users to connect devices to their Wi-Fi network without entering long
passphrases.

[].rssi int -127..0 Wi-Fi RSSI: RSSI (Received Signal Strength Indicator) measures the
power level of a received signal. It’s expressed in decibels (dBm), with
higher values (closer to zero) indicating stronger signals. For example,
-30 dBm is a very strong signal, while -90 dBm is very weak.

[].signal uint 0..100 Wi-Fi signal strength in precents

[].auth_mode string open
WEP
WPA
WPA2
WPA-WPA2
EAP
WPA3
WPA2-WPA3
WAPI
OWE
WPA3-ENT

Wi-Fi auth_mode (authentication mode) determines how device
authenticate on a Wi-Fi network.

[].pairwise_cipher string The pairwise cipher in Wi-Fi security refers to the encryption method
used to secure unicast (one-to-one) communication between a client
device and an access point.

[].group_cipher string none
WEP40
WEP104
TKIP
CCMP
TKIP-CCMP
AES-CMAC-128
SMS4
GCMP
GCMP256
AES-GMAC-128
AES-GMAC-256
unknown

The group cipher in Wi-Fi security refers to the encryption method used
to secure multicast and broadcast communications within a Wi-Fi
network.

[].phy string bgn

[].wps string true or false

[].country string 2 characters The Wi-Fi country code is a setting that determines the regulatory
domain for a Wi-Fi device, such as a router or access point.

Field Type Range Remarks

Endpoint api/v1/wifi/wps

Method POST

©2025 whatwatt Integration via REST/MQTT · v2.0 / 47 60

6.10. Ethernet Configuration
This endpoint allows you to configure an Ethernet connection.
HTTP REST API to configure Ethernet settings (you can also do it from the device's WebUI)

Ethernet settings JSON object description

Example response on GET request

{
 "enable":true,
 "static_ip":false,
 "ip":"0.0.0.0",
 "netmask":"0.0.0.0",
 "gateway":"0.0.0.0",
 "dns":"0.0.0.0"
}

6.11. Restarting the device device
This endpoint allows you to reboot the device.
Performing a POST under this endpoint returns a 204 code with no message if successful (you can also
do it from the device's WebUI)
HTTP REST API to reboot the device:

Endpoint api/v1/eth/settings

Method GET, POST, PUT

Response content type application/json

Field Type Default Range Remarks

.enable boolean true Enables Ethernet port

.static_ip bool false Applies to setting a static addressing instead of using a DHCP client. Remember
that when setting static addressing, address collision can occur in the network,
so you need to be sure that no other device has the same address or will not
have it. DHCP servers on Routers are usually configured in such a way that they
assign addresses in the range 192.168.X.100 to 192.168.X.200, so that static
addresses for various devices are safely set below 100 or above 200.

.ip string 0.0.0.0 String stored as an IPv4 address. This is a static IP address of the device in the
network, it can have a value e.g. 192.168.X.201 where X is a subnet e.g. 0, 1, 2
etc.

.netmask string 0.0.0.0 String stored as an IPv4 address. This is a subnet mask, it must be set to non-
zero values if you set a static IP address. Normally, the mask value is
255.255.255.0

.gateway string 0.0.0.0 String stored as an IPv4 address. This is the gateway address, in other words,
the address of the device (Router) to which the whatwatt device sends data to
redirect it to the Internet. The value cannot be zero in the case of setting a static
IP address. Normally, the gateway value is 192.168.X.1, where X replaces your
individual gateway value

.dns string 0.0.0.0 String stored as an IPv4 address. This is the address of the DNS server, this
server is used to resolve names on the network to IP addresses, e.g.
Example.com can be resolved to 1.2.3.4. Setting this value to nonzero is required
if you set a static IP address. You can enter an external IP address here, such as
8.8.8.8 or the same address as in the gateway field, then the router will resolve
the names

©2025 whatwatt Integration via REST/MQTT · v2.0 / 48 60

6.12. Factory reset
This endpoint allows you to restore your device to factory settings. You can also do this with a push.
Performing a POST under this endpoint returns a 204 code with no message if successful (you can also
do it from the device's WebUI).
HTTP REST API to factory reset the device:

6.13. SD card access
This endpoint permits the browsing and downloading of files from your SD card. If the card is not
mounted, an error code 503 will be returned.
HTTP REST API endpoint

Directory Listing
Request GET /sdcard/ or GET /sdcard/<directory_name>/

Example JSON response
{
 "path": "/sdcard/",
 "files": [
 {
 "name": "20240929.CSV",
 "size": 1161385,
 "type": "file"
 },
 {
 "name": "SYSTEM~1",
 "size": 0,
 "type": "dir"
 },
 {
 "name": "NIHAO.TXT",
 "size": 13,
 "type": "file"
 }
]
}

Structure of the response fields:

• path (string) – the complete directory path for which the contents are being listed.

Endpoint api/v1/reboot

Method POST

Endpoint api/v1/restore

Method POST

Base Path /sdcard/

Method GET, DELETE

Response content type Varies depending on the requested resource (e.g., application/json for directory listing, text/csv
when downloading a CSV file).

©2025 whatwatt Integration via REST/MQTT · v2.0 / 49 60

• files[].name (string) – name of the file or directory.

• files[].size (uint) – file size in bytes (directories are reported as size 0).

• files[].type (string) – indicates whether the item is a file or a dir.

File Download
Request GET /sdcard/<filename.extension>
If the path points to a specific file (e.g., 20240929.CSV), the server attempts to detect the MIME type
based on the file extension. For example, a .csv file will typically be served with the MIME type text/csv.
Example (using curl) curl -s http://<device_address>/sdcard/20241010.CSV
Sample response (CSV snippet)
RID,TIME,MID,MSTAT,TARIFF,PF,EAP_T,EAP_T1,EAP_T2,EAN_T,EAN_T1,EAN_T2,...
1,"2024-10-10T05:01:36Z","220000399","OK",2,0.169,29.424,20.841,8.583,...
4,"2024-10-10T05:01:55Z","220000399","OK",2,0.23,29.424,20.841,8.583,...
...

• MIME type (Multipurpose Internet Mail Extensions) specifies the nature and format of the file, which
helps browsers or other applications interpret it correctly.

• To download a file from the server and save it with the same name as in the URL, simply use the -O
switch. Then cURL will download the file and automatically give it a name that matches the last
element of the path in the URL.

curl -O http://192.168.99.178/sdcard/20241010.CSV

• In this case, you don't need to specify the file name separately with the -o option; cURL will
automatically create a file named 20241010.CSV.

• You can also easily download the file using a browser by entering the path in the address bar or by
opening the page http://<device_ip>/sd.html

File Delete
Request for file deletion: DELETE /sdcard/[path/]<filename.extension>
Request for directory deletion: DELETE /sdcard/path/[path/]

• In the case of deleting directories, all files and subdirectories contained within will also be deleted.

Example (using curl) curl -i -X DELETE http://127.0.0.1:8080/sdcard/
20250127.csv

• Deletes file. If successful, returns HTTP code 204.

Example (using curl) curl -i -X DELETE http://127.0.0.1:8080/sdcard/
some_directory/

• Deletes directory. If successful, returns HTTP code 204.

Error Handling

• 503 (Service Unavailable) – returned when the SD card is not mounted or otherwise unavailable.

• 400 (Bad Request) – returned when required operation is invalid, for example delete of root directory.

• 404 (Not Found) – returned when there no file or directory.

6.13.1.Usage Examples
Listing the Contents of the SD Card Root Directory

©2025 whatwatt Integration via REST/MQTT · v2.0 / 50 60

curl -s http://192.168.99.178/sdcard/

Sample response
{
 "path": "/sdcard/",
 "files": [
 {"name":"NIHAO.TXT","size":13,"type":"file"},
 {"name":"SYSTEM~1","size":0,"type":"dir"},
 {"name":"20240924.CSV","size":493074,"type":"file"},
 ...
]
}

Downloading a CSV File
curl -s http://192.168.99.178/sdcard/20241010.CSV

Sample response
RID,TIME,MID,MSTAT,TARIFF,PF,EAP_T,EAP_T1,EAP_T2,EAN_T,EAN_T1,EAN_T2,...
1,"2024-10-10T05:01:36Z","220000399","OK",2,0.169,29.424,20.841,8.583,...
...

or save the file to disk immediately
curl -O http://192.168.99.178/sdcard/20241010.CSV

Delete a CSV File
curl -i -X DELETE http://192.168.99.178/sdcard/20241010.CSV

Returns 204 in case of success.

Script to download CSV files from a date range
CSV files with reports on the card are saved in the YYYYMMDD.CSV format. By default, saving reports to
the SD card is disabled, you can enable it in the System WebUI section, and you can also set the saving
frequency (resolution) there.
Script arguments

• argument 1: device IP address

• argument 2: start date (YYYY-MM-DD)

• argument 3: end date (YYYY-MM-DD)

Script source code:
#!/usr/bin/env bash

if [$# -ne 3]; then
 echo "Usage: $0 <device_ip> <start_date> <end_date>"
 exit 1
fi

DEVICE_IP="$1"
START_DATE="$2"
END_DATE="$3"

if ! date -d "$START_DATE" &>/dev/null; then
 echo "Invalid start date: $START_DATE"
 exit 1
fi

if ! date -d "$END_DATE" &>/dev/null; then
 echo "Invalid end date: $END_DATE"
 exit 1
fi

©2025 whatwatt Integration via REST/MQTT · v2.0 / 51 60

START_DATE_INT=$(date -d "$START_DATE" +%Y%m%d)
END_DATE_INT=$(date -d "$END_DATE" +%Y%m%d)

if [$START_DATE_INT -gt $END_DATE_INT]; then
 echo "Error: start date is later than end date."
 exit 1
fi

FILE_LIST_JSON=$(curl -s "http://$DEVICE_IP/sdcard/")

if [-z "$FILE_LIST_JSON"]; then
 echo "No response or SD card unavailable."
 exit 1
fi

CSV_FILES=$(echo "$FILE_LIST_JSON" | jq -r '.files[] | select(.type=="file")
| .name' | grep -E '^[0-9]{8}\.CSV$')

if [-z "$CSV_FILES"]; then
 echo "No CSV files found in YYYYMMDD.CSV format."
 exit 0
fi

for file in $CSV_FILES; do
 DATE_PART="${file%.*}"
 YEAR=${DATE_PART:0:4}
 MONTH=${DATE_PART:4:2}
 DAY=${DATE_PART:6:2}
 FILE_DATE_INT=$((10#$YEAR * 10000 + 10#$MONTH * 100 + 10#$DAY))
 if [$FILE_DATE_INT -ge $START_DATE_INT] && [$FILE_DATE_INT -le
$END_DATE_INT]; then
 echo "Downloading: $file"
 curl -s -O "http://$DEVICE_IP/sdcard/$file" || echo "Error downloading $file"
 fi
done

echo "Done."

To make the script executable, you need to give it permissions:
chmod +x download_csv.sh

Usage (example):
./download_csv.sh 192.168.99.178 2024-09-01 2024-09-30

or
./download_csv.sh 192.168.99.178 20240901 20240930

Result:
Downloading: 20240924.CSV
Downloading: 20240925.CSV
Downloading: 20240928.CSV
Downloading: 20240929.CSV
Downloading: 20240930.CSV
Done.

Summary
The /sdcard/ endpoint provides a straightforward way to access the SD card contents. When /
sdcard/ is requested without specifying a file, it returns a list of directories and files. If the request
specifies a particular file (for example, /sdcard/YYYYMMDD.csv), the file is returned in the detected
MIME format. If the SD card is missing or not mounted, the server responds with a 503 error.

©2025 whatwatt Integration via REST/MQTT · v2.0 / 52 60

Following the guidelines and examples above should help integrate SD card file handling into client
applications or scripts (e.g., using curl) with minimal effort.

6.14. Firmware Update
This endpoint allows you to update the firmware. The file should be sent in multipart/form-data format.
(The update can also be performed from the WebUI of the device).

The following is an example of the curl command to update the firmware:
curl -i -F file=@upgrade_file.bin http://192.168.1.101/load

Multipart/form-data is a media type used to encode the files and other form data when they are being
uploaded via HTTP POST requests. This format splits the form data into multiple parts, each separated
by a boundary, and encodes each part with its own content type and disposition metadata. The parts
together form the payload of the HTTP request.
The origin of multipart/form-data can be traced back to RFC 2388, which was published in 1998. This
specification was developed to address the limitations of traditional form submission formats, such as
application/x-www-form-urlencoded, which struggled with handling binary data and complex file
uploads effectively. By allowing each part of the form to be processed independently, multipart/form-
data enabled more robust and flexible handling of diverse data types, facilitating the seamless upload of
files and enhancing the web's interactive capabilities.

Endpoint load

Method POST

Response content type plain/text

©2025 whatwatt Integration via REST/MQTT · v2.0 / 53 60

http://192.168.1.101/load

Appendix A

Understanding HTTP Requests, Methods, Response Codes, Body, and Path.
Introduction
The Hypertext Transfer Protocol (HTTP) is the foundation of any data exchange on the Web and a
protocol used for transmitting hypermedia documents, such as HTML. It is designed to enable
communications between clients and servers. This guide will delve into the various aspects of HTTP
requests, methods, response codes, body, and path.
HTTP Requests
An HTTP request is a message sent by the client to initiate an action on the server. The request contains
several key components, including the method, path, headers, and body. The request's purpose is to
perform a specific action, such as retrieving data, submitting data, or deleting data on the server.
HTTP Methods
HTTP defines a set of request methods to indicate the desired action to be performed for a given
resource. These methods are often referred to as HTTP verbs. Here are some of the most commonly
used methods:

• GET: Requests data from a specified resource.

• POST: Submits data to be processed to a specified resource.

• PUT: Updates a current resource with new data.

• DELETE: Deletes the specified resource.

Each method defines a specific action that can be performed on the resource, and it must be used
appropriately to ensure the correct operation of the API.

HTTP Response Codes
When a server receives and processes an HTTP request, it sends back a response. The response
includes a status code, which indicates the result of the request. Here are some of the key status codes:

• 200: Success – The request has succeeded, and the server returns the requested resource, usually
in JSON format.

• 204: No Content – The server successfully processed the request, but there is no content to return.

• 400: Bad Request – The server could not understand the request due to invalid syntax or
parameters.

• 401: Unauthorized – The client must authenticate itself to get the requested response.

• 404: Not Found – The server cannot find the requested resource; it may be disabled or unavailable.

• 500: Internal Server Error – The server encountered an internal problem and could not complete the
request.

• 503: Service Unavailable – The server is not ready to handle the request, often due to maintenance
or overload.

HTTP Request Body
The body of an HTTP request is used to send data to the server. This data is typically sent with POST or
PUT requests and can be in various formats, such as JSON, XML, or form data. The body contains the
payload that the client wants to send to the server for processing.

©2025 whatwatt Integration via REST/MQTT · v2.0 / 54 60

HTTP Path
The path is a part of the URL that identifies a specific resource on the server. It usually follows the
domain name and defines the endpoint to which the request is being sent. For example, in the context
provided, the path for the service management and basic settings endpoint is:
api/v1/settings

This path, combined with the appropriate HTTP method, allows the client to perform actions such as
retrieving, updating, or deleting the resource related to system settings.

Conclusion
Understanding HTTP requests, methods, response codes, body, and path is essential for effectively
working with web APIs. Each component plays a crucial role in ensuring seamless communication
between the client and server, allowing for efficient data exchange and resource management. By
mastering these elements, developers can create robust and reliable applications that leverage the
power of HTTP.
To interact with web APIs effectively, the `curl` command-line tool is invaluable. It allows for the
execution of HTTP requests directly from the terminal, providing a versatile and powerful means of
engaging with endpoints such as those described.

©2025 whatwatt Integration via REST/MQTT · v2.0 / 55 60

Appendix B

Using curl Command Options

• -i: This option is used to include the HTTP response headers in the output. When making a request,
it's often crucial to see the headers returned by the server, as they contain important information
such as status codes and content types.
curl -i [URL]

• -s: The `-s` option stands for "silent" mode. It suppresses progress meters and error messages,
making the output cleaner and more readable, especially useful when processing the response in
scripts.
curl -s [URL]

• -d: This option is used to send data in a POST request. You'll typically use this option when you need
to submit form data or JSON payloads to the server for processing. It's crucial in scenarios where the
request body must be included.
curl -X POST -d '{"key": "value"}' [URL]

• -X: The `-X` option allows you to specify the HTTP method to use for the request, such as GET, POST,
PUT, DELETE, etc. This is essential for interacting with APIs that require specific methods to perform
different actions.
curl -X PUT -d '{"setting": "new value"}' [URL]

By combining these options, you can craft precise and powerful HTTP requests tailored to your needs.
For example, to send a JSON payload with a POST request and include the response headers, you could
use:

curl -i -X POST -d '{"setting": "new value"}' [URL]

Mastering the `curl` command and its options equips you with the ability to seamlessly communicate
with web APIs, ensuring efficient and effective interactions with server resources.

©2025 whatwatt Integration via REST/MQTT · v2.0 / 56 60

Appendix C
Below is a script that allows you to flatten a JSON structure using the jq command. This powerful tool
streamlines the process of manipulating JSON data, enabling you to transform nested structures into a
more manageable and readable format. By leveraging jq, you can effectively query and reshape your
JSON data with ease, making it an invaluable asset for developers and data analysts alike. Dive into the
script and discover how jq can enhance your data processing capabilities, turning complex JSON
hierarchies into simplified, flat structures.
#!/bin/bash

jq -r '
 def walk(path):
 if (type == "object") then
 to_entries[]
 | . as $entry
 | $entry.value
 | walk(path + [$entry.key])
 elif (type == "array") then
 to_entries[]
 | . as $entry
 | $entry.value
 | walk(path + ["[\($entry.key)]"])
 else
 "\(path | join("."))\t\(type)\t\(.)"
 end;
 walk([])
' | column -t

Thanks to this script, we will receive responses in the following format, for example api/v1/report:
curl -s http://192.168.X.X/api/v1/report | ./format_json.sh

report.id number 74149
report.interval number 5.435
report.tariff number 2
report.date_time string 2024-12-14T05:23:05Z
report.instantaneous_power.active.positive.total number 0
report.instantaneous_power.active.positive.l1 number 0
report.instantaneous_power.active.positive.l2 number 0
report.instantaneous_power.active.positive.l3 number 0
report.instantaneous_power.active.negative.total number 0
report.instantaneous_power.active.negative.l1 number 0
report.instantaneous_power.active.negative.l2 number 0
report.instantaneous_power.active.negative.l3 number 0
report.instantaneous_power.reactive.positive.l1 number 0
report.instantaneous_power.reactive.positive.l2 number 0
report.instantaneous_power.reactive.positive.l3 number 0
report.instantaneous_power.reactive.negative.l1 number 0
report.instantaneous_power.reactive.negative.l2 number 0
report.instantaneous_power.reactive.negative.l3 number 0
report.voltage.l1 number 234
report.voltage.l2 number 0
report.voltage.l3 number 0
report.current.l1 number 0
report.current.l2 number 0
report.current.l3 number 0
report.energy.active.positive.total number 23.888
report.energy.active.positive.t1 number 33.388
report.energy.active.positive.t2 number 49.248
report.energy.active.negative.total number 0.004
report.energy.active.negative.t1 number 7.868
report.energy.active.negative.t2 number 1.097
report.energy.reactive.positive.total number 10.505
report.energy.reactive.negative.total number 15.147
report.energy.reactive.imported.inductive.total number 33.715
report.energy.reactive.imported.inductive.t1 number 31.7
report.energy.reactive.imported.inductive.t2 number 2.015
report.energy.reactive.imported.capacitive.total number 2.247

©2025 whatwatt Integration via REST/MQTT · v2.0 / 57 60

report.energy.reactive.imported.capacitive.t1 number 2.247
report.energy.reactive.imported.capacitive.t2 number 0
report.energy.reactive.exported.inductive.total number 3.555
report.energy.reactive.exported.inductive.t1 number 2.727
report.energy.reactive.exported.inductive.t2 number 0.828
report.energy.reactive.exported.capacitive.total number 94.536
report.energy.reactive.exported.capacitive.t1 number 4.852
report.energy.reactive.exported.capacitive.t2 number 89.684
report.conv_factor number 1
meter.status string OK
meter.interface string MBUS
meter.protocol string DLMS
meter.logical_name string LGZ1030662444349
meter.id string 636192
meter.model string 636192
meter.vendor string Landis+Gyr
meter.prefix string LGZ
system.id string ECC9FF5C7A68
system.date_time string 2025-02-04T15:11:47Z
system.boot_id string F8CB5873
system.time_since_boot number 450742

©2025 whatwatt Integration via REST/MQTT · v2.0 / 58 60

Appendix D
The following table provides a description of selected OBIS codes.

Logical name (C.D.E)
Short OBIS

Description Unit

96.1.0 Meter identifier

96.14.0 Current tariff

13.7.0 Instantaneous power factor

1.8.0 Positive active energy (A+) total Wh

1.8.1 Positive active energy (A+) in tariff T1 Wh

1.8.2 Positive active energy (A+) in tariff T2 Wh

2.8.0 Negative active energy (A-) total Wh

2.8.1 Negative active energy (A-) in tariff T1 Wh

2.8.2 Negative active energy (A-) in tariff T2 Wh

3.8.0 Positive reactive energy (Q+) total varh

3.8.1 Positive reactive energy (Q+) in tariff T1 varh

3.8.2 Positive reactive energy (Q+) in tariff T2 varh

4.8.0 Negative reactive energy (Q-) total varh

4.8.1 Negative reactive energy (Q-) in tariff T1 varh

4.8.2 Negative reactive energy (Q-) in tariff T2 varh

5.8.0 Imported inductive reactive energy in 1-st quadrant (Q1) total varh

5.8.1 Imported inductive reactive energy in 1-st quadrant (Q1) in tariff T1 varh

5.8.2 Imported inductive reactive energy in 1-st quadrant (Q1) in tariff T2 varh

6.8.0 Imported capacitive reactive energy in 2-nd quadrant (Q2) total varh

6.8.1 Imported capacitive reactive energy in 2-nd quadr. (Q2) in tariff T1 varh

6.8.2 Imported capacitive reactive energy in 2-nd quadr. (Q2) in tariff T2 varh

7.8.0 Exported inductive reactive energy in 3-rd quadrant (Q3) total varh

7.8.1 Exported inductive reactive energy in 3-rd quadrant (Q3) in tariff T1 varh

7.8.2 Exported inductive reactive energy in 3-rd quadrant (Q3) in tariff T2 varh

8.8.0 Exported capacitive reactive energy in 4-th quadrant (Q4) total varh

8.8.1 Exported capacitive reactive energy in 4-th quadr. (Q4) in tariff T1 varh

8.8.2 Exported capacitive reactive energy in 4-th quadr. (Q4) in tariff T2 varh

1.6.0 Positive active maximum demand (A+) total Wh

1.6.1 Positive active maximum demand (A+) in tariff T1 Wh

1.6.2 Positive active maximum demand (A+) in tariff T2 Wh

2.6.0 Negative active maximum demand (A-) total Wh

2.6.1 Negative active maximum demand (A-) in tariff T1 Wh

2.6.2 Negative active maximum demand (A-) in tariff T2 Wh

1.7.0 Positive active instantaneous power (A+) W

©2025 whatwatt Integration via REST/MQTT · v2.0 / 59 60

21.7.0 Positive active instantaneous power (A+) in phase L1 W

41.7.0 Positive active instantaneous power (A+) in phase L2 W

61.7.0 Positive active instantaneous power (A+) in phase L3 W

2.7.0 Negative active instantaneous power (A-) W

22.7.0 Negative active instantaneous power (A-) in phase L1 W

42.7.0 Negative active instantaneous power (A-) in phase L2 W

62.7.0 Negative active instantaneous power (A-) in phase L3 W

3.7.0 Positive reactive instantaneous power (Q+) var

23.7.0 Positive reactive instantaneous power (Q+) in phase L1 var

43.7.0 Positive reactive instantaneous power (Q+) in phase L2 var

63.7.0 Positive reactive instantaneous power (Q+) in phase L3 var

4.7.0 Negative reactive instantaneous power (Q-) var

24.7.0 Negative reactive instantaneous power (Q-) in phase L1 var

44.7.0 Negative reactive instantaneous power (Q-) in phase L2 var

64.7.0 Negative reactive instantaneous power (Q-) in phase L3 var

9.7.0 Apparent instantaneous power (S+) VA

32.7.0 Instantaneous voltage (U) in phase L1 V

52.7.0 Instantaneous voltage (U) in phase L2 V

72.7.0 Instantaneous voltage (U) in phase L3 V

31.7.0 Instantaneous current (I) in phase L1 A

51.7.0 Instantaneous current (I) in phase L2 A

71.7.0 Instantaneous current (I) in phase L3 A

42.0.0 Meter identifier

96.1.1 Meter model

Logical name (C.D.E)
Short OBIS

Description Unit

©2025 whatwatt Integration via REST/MQTT · v2.0 / 60 60

	Introduction
	General Information
	Reading meter reports with REST API HTTP
	Integration over MQTT client
	Secure MQTT Integration
	Settings
	Appendix A
	Appendix B
	Appendix C
	Appendix D

